| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pr2cv1 | Unicode version | ||
| Description: If an unordered pair is equinumerous to ordinal two, then a part is a set. (Contributed by RP, 21-Oct-2023.) |
| Ref | Expression |
|---|---|
| pr2cv1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o3 6534 |
. . . 4
| |
| 2 | ensym 6891 |
. . . 4
| |
| 3 | 1, 2 | eqbrtrrid 4090 |
. . 3
|
| 4 | bren 6853 |
. . 3
| |
| 5 | 3, 4 | sylib 122 |
. 2
|
| 6 | vex 2776 |
. . . . . . 7
| |
| 7 | 0ex 4182 |
. . . . . . 7
| |
| 8 | 6, 7 | fvex 5614 |
. . . . . 6
|
| 9 | eleq1 2269 |
. . . . . 6
| |
| 10 | 8, 9 | mpbii 148 |
. . . . 5
|
| 11 | 10 | adantl 277 |
. . . 4
|
| 12 | 1oex 6528 |
. . . . . . . 8
| |
| 13 | 6, 12 | fvex 5614 |
. . . . . . 7
|
| 14 | eleq1 2269 |
. . . . . . 7
| |
| 15 | 13, 14 | mpbii 148 |
. . . . . 6
|
| 16 | 15 | adantl 277 |
. . . . 5
|
| 17 | simplr 528 |
. . . . . . . 8
| |
| 18 | simpr 110 |
. . . . . . . 8
| |
| 19 | 17, 18 | eqtr4d 2242 |
. . . . . . 7
|
| 20 | f1of1 5538 |
. . . . . . . . 9
| |
| 21 | 20 | ad2antrr 488 |
. . . . . . . 8
|
| 22 | 7 | prid1 3744 |
. . . . . . . . 9
|
| 23 | 22 | a1i 9 |
. . . . . . . 8
|
| 24 | 12 | prid2 3745 |
. . . . . . . . 9
|
| 25 | 24 | a1i 9 |
. . . . . . . 8
|
| 26 | f1veqaeq 5856 |
. . . . . . . 8
| |
| 27 | 21, 23, 25, 26 | syl12anc 1248 |
. . . . . . 7
|
| 28 | 19, 27 | mpd 13 |
. . . . . 6
|
| 29 | 1n0 6536 |
. . . . . . . 8
| |
| 30 | 29 | nesymi 2423 |
. . . . . . 7
|
| 31 | 30 | a1i 9 |
. . . . . 6
|
| 32 | 28, 31 | pm2.21dd 621 |
. . . . 5
|
| 33 | f1of 5539 |
. . . . . . . 8
| |
| 34 | 24 | a1i 9 |
. . . . . . . 8
|
| 35 | 33, 34 | ffvelcdmd 5734 |
. . . . . . 7
|
| 36 | elpri 3661 |
. . . . . . 7
| |
| 37 | 35, 36 | syl 14 |
. . . . . 6
|
| 38 | 37 | adantr 276 |
. . . . 5
|
| 39 | 16, 32, 38 | mpjaodan 800 |
. . . 4
|
| 40 | 22 | a1i 9 |
. . . . . 6
|
| 41 | 33, 40 | ffvelcdmd 5734 |
. . . . 5
|
| 42 | elpri 3661 |
. . . . 5
| |
| 43 | 41, 42 | syl 14 |
. . . 4
|
| 44 | 11, 39, 43 | mpjaodan 800 |
. . 3
|
| 45 | 44 | exlimiv 1622 |
. 2
|
| 46 | 5, 45 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-1o 6520 df-2o 6521 df-er 6638 df-en 6846 |
| This theorem is referenced by: pr2cv2 7325 pr2cv 7326 |
| Copyright terms: Public domain | W3C validator |