ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pr2cv1 Unicode version

Theorem pr2cv1 7364
Description: If an unordered pair is equinumerous to ordinal two, then a part is a set. (Contributed by RP, 21-Oct-2023.)
Assertion
Ref Expression
pr2cv1  |-  ( { A ,  B }  ~~  2o  ->  A  e.  _V )

Proof of Theorem pr2cv1
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 df2o3 6574 . . . 4  |-  2o  =  { (/) ,  1o }
2 ensym 6931 . . . 4  |-  ( { A ,  B }  ~~  2o  ->  2o  ~~  { A ,  B }
)
31, 2eqbrtrrid 4118 . . 3  |-  ( { A ,  B }  ~~  2o  ->  { (/) ,  1o }  ~~  { A ,  B } )
4 bren 6893 . . 3  |-  ( {
(/) ,  1o }  ~~  { A ,  B }  <->  E. f  f : { (/)
,  1o } -1-1-onto-> { A ,  B } )
53, 4sylib 122 . 2  |-  ( { A ,  B }  ~~  2o  ->  E. f 
f : { (/) ,  1o } -1-1-onto-> { A ,  B } )
6 vex 2802 . . . . . . 7  |-  f  e. 
_V
7 0ex 4210 . . . . . . 7  |-  (/)  e.  _V
86, 7fvex 5646 . . . . . 6  |-  ( f `
 (/) )  e.  _V
9 eleq1 2292 . . . . . 6  |-  ( ( f `  (/) )  =  A  ->  ( (
f `  (/) )  e. 
_V 
<->  A  e.  _V )
)
108, 9mpbii 148 . . . . 5  |-  ( ( f `  (/) )  =  A  ->  A  e.  _V )
1110adantl 277 . . . 4  |-  ( ( f : { (/) ,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  A )  ->  A  e.  _V )
12 1oex 6568 . . . . . . . 8  |-  1o  e.  _V
136, 12fvex 5646 . . . . . . 7  |-  ( f `
 1o )  e. 
_V
14 eleq1 2292 . . . . . . 7  |-  ( ( f `  1o )  =  A  ->  (
( f `  1o )  e.  _V  <->  A  e.  _V ) )
1513, 14mpbii 148 . . . . . 6  |-  ( ( f `  1o )  =  A  ->  A  e.  _V )
1615adantl 277 . . . . 5  |-  ( ( ( f : { (/)
,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  /\  ( f `  1o )  =  A
)  ->  A  e.  _V )
17 simplr 528 . . . . . . . 8  |-  ( ( ( f : { (/)
,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  /\  ( f `  1o )  =  B
)  ->  ( f `  (/) )  =  B )
18 simpr 110 . . . . . . . 8  |-  ( ( ( f : { (/)
,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  /\  ( f `  1o )  =  B
)  ->  ( f `  1o )  =  B )
1917, 18eqtr4d 2265 . . . . . . 7  |-  ( ( ( f : { (/)
,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  /\  ( f `  1o )  =  B
)  ->  ( f `  (/) )  =  ( f `  1o ) )
20 f1of1 5570 . . . . . . . . 9  |-  ( f : { (/) ,  1o }
-1-1-onto-> { A ,  B }  ->  f : { (/) ,  1o } -1-1-> { A ,  B } )
2120ad2antrr 488 . . . . . . . 8  |-  ( ( ( f : { (/)
,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  /\  ( f `  1o )  =  B
)  ->  f : { (/) ,  1o } -1-1-> { A ,  B }
)
227prid1 3772 . . . . . . . . 9  |-  (/)  e.  { (/)
,  1o }
2322a1i 9 . . . . . . . 8  |-  ( ( ( f : { (/)
,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  /\  ( f `  1o )  =  B
)  ->  (/)  e.  { (/)
,  1o } )
2412prid2 3773 . . . . . . . . 9  |-  1o  e.  {
(/) ,  1o }
2524a1i 9 . . . . . . . 8  |-  ( ( ( f : { (/)
,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  /\  ( f `  1o )  =  B
)  ->  1o  e.  {
(/) ,  1o } )
26 f1veqaeq 5892 . . . . . . . 8  |-  ( ( f : { (/) ,  1o } -1-1-> { A ,  B }  /\  ( (/) 
e.  { (/) ,  1o }  /\  1o  e.  { (/)
,  1o } ) )  ->  ( (
f `  (/) )  =  ( f `  1o )  ->  (/)  =  1o ) )
2721, 23, 25, 26syl12anc 1269 . . . . . . 7  |-  ( ( ( f : { (/)
,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  /\  ( f `  1o )  =  B
)  ->  ( (
f `  (/) )  =  ( f `  1o )  ->  (/)  =  1o ) )
2819, 27mpd 13 . . . . . 6  |-  ( ( ( f : { (/)
,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  /\  ( f `  1o )  =  B
)  ->  (/)  =  1o )
29 1n0 6576 . . . . . . . 8  |-  1o  =/=  (/)
3029nesymi 2446 . . . . . . 7  |-  -.  (/)  =  1o
3130a1i 9 . . . . . 6  |-  ( ( ( f : { (/)
,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  /\  ( f `  1o )  =  B
)  ->  -.  (/)  =  1o )
3228, 31pm2.21dd 623 . . . . 5  |-  ( ( ( f : { (/)
,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  /\  ( f `  1o )  =  B
)  ->  A  e.  _V )
33 f1of 5571 . . . . . . . 8  |-  ( f : { (/) ,  1o }
-1-1-onto-> { A ,  B }  ->  f : { (/) ,  1o } --> { A ,  B } )
3424a1i 9 . . . . . . . 8  |-  ( f : { (/) ,  1o }
-1-1-onto-> { A ,  B }  ->  1o  e.  { (/) ,  1o } )
3533, 34ffvelcdmd 5770 . . . . . . 7  |-  ( f : { (/) ,  1o }
-1-1-onto-> { A ,  B }  ->  ( f `  1o )  e.  { A ,  B } )
36 elpri 3689 . . . . . . 7  |-  ( ( f `  1o )  e.  { A ,  B }  ->  ( ( f `  1o )  =  A  \/  (
f `  1o )  =  B ) )
3735, 36syl 14 . . . . . 6  |-  ( f : { (/) ,  1o }
-1-1-onto-> { A ,  B }  ->  ( ( f `  1o )  =  A  \/  ( f `  1o )  =  B )
)
3837adantr 276 . . . . 5  |-  ( ( f : { (/) ,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  ->  ( ( f `
 1o )  =  A  \/  ( f `
 1o )  =  B ) )
3916, 32, 38mpjaodan 803 . . . 4  |-  ( ( f : { (/) ,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  ->  A  e.  _V )
4022a1i 9 . . . . . 6  |-  ( f : { (/) ,  1o }
-1-1-onto-> { A ,  B }  -> 
(/)  e.  { (/) ,  1o } )
4133, 40ffvelcdmd 5770 . . . . 5  |-  ( f : { (/) ,  1o }
-1-1-onto-> { A ,  B }  ->  ( f `  (/) )  e. 
{ A ,  B } )
42 elpri 3689 . . . . 5  |-  ( ( f `  (/) )  e. 
{ A ,  B }  ->  ( ( f `
 (/) )  =  A  \/  ( f `  (/) )  =  B ) )
4341, 42syl 14 . . . 4  |-  ( f : { (/) ,  1o }
-1-1-onto-> { A ,  B }  ->  ( ( f `  (/) )  =  A  \/  ( f `  (/) )  =  B ) )
4411, 39, 43mpjaodan 803 . . 3  |-  ( f : { (/) ,  1o }
-1-1-onto-> { A ,  B }  ->  A  e.  _V )
4544exlimiv 1644 . 2  |-  ( E. f  f : { (/)
,  1o } -1-1-onto-> { A ,  B }  ->  A  e.  _V )
465, 45syl 14 1  |-  ( { A ,  B }  ~~  2o  ->  A  e.  _V )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395   E.wex 1538    e. wcel 2200   _Vcvv 2799   (/)c0 3491   {cpr 3667   class class class wbr 4082   -1-1->wf1 5314   -1-1-onto->wf1o 5316   ` cfv 5317   1oc1o 6553   2oc2o 6554    ~~ cen 6883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1o 6560  df-2o 6561  df-er 6678  df-en 6886
This theorem is referenced by:  pr2cv2  7365  pr2cv  7366
  Copyright terms: Public domain W3C validator