| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pr2cv1 | Unicode version | ||
| Description: If an unordered pair is equinumerous to ordinal two, then a part is a set. (Contributed by RP, 21-Oct-2023.) |
| Ref | Expression |
|---|---|
| pr2cv1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o3 6574 |
. . . 4
| |
| 2 | ensym 6931 |
. . . 4
| |
| 3 | 1, 2 | eqbrtrrid 4118 |
. . 3
|
| 4 | bren 6893 |
. . 3
| |
| 5 | 3, 4 | sylib 122 |
. 2
|
| 6 | vex 2802 |
. . . . . . 7
| |
| 7 | 0ex 4210 |
. . . . . . 7
| |
| 8 | 6, 7 | fvex 5646 |
. . . . . 6
|
| 9 | eleq1 2292 |
. . . . . 6
| |
| 10 | 8, 9 | mpbii 148 |
. . . . 5
|
| 11 | 10 | adantl 277 |
. . . 4
|
| 12 | 1oex 6568 |
. . . . . . . 8
| |
| 13 | 6, 12 | fvex 5646 |
. . . . . . 7
|
| 14 | eleq1 2292 |
. . . . . . 7
| |
| 15 | 13, 14 | mpbii 148 |
. . . . . 6
|
| 16 | 15 | adantl 277 |
. . . . 5
|
| 17 | simplr 528 |
. . . . . . . 8
| |
| 18 | simpr 110 |
. . . . . . . 8
| |
| 19 | 17, 18 | eqtr4d 2265 |
. . . . . . 7
|
| 20 | f1of1 5570 |
. . . . . . . . 9
| |
| 21 | 20 | ad2antrr 488 |
. . . . . . . 8
|
| 22 | 7 | prid1 3772 |
. . . . . . . . 9
|
| 23 | 22 | a1i 9 |
. . . . . . . 8
|
| 24 | 12 | prid2 3773 |
. . . . . . . . 9
|
| 25 | 24 | a1i 9 |
. . . . . . . 8
|
| 26 | f1veqaeq 5892 |
. . . . . . . 8
| |
| 27 | 21, 23, 25, 26 | syl12anc 1269 |
. . . . . . 7
|
| 28 | 19, 27 | mpd 13 |
. . . . . 6
|
| 29 | 1n0 6576 |
. . . . . . . 8
| |
| 30 | 29 | nesymi 2446 |
. . . . . . 7
|
| 31 | 30 | a1i 9 |
. . . . . 6
|
| 32 | 28, 31 | pm2.21dd 623 |
. . . . 5
|
| 33 | f1of 5571 |
. . . . . . . 8
| |
| 34 | 24 | a1i 9 |
. . . . . . . 8
|
| 35 | 33, 34 | ffvelcdmd 5770 |
. . . . . . 7
|
| 36 | elpri 3689 |
. . . . . . 7
| |
| 37 | 35, 36 | syl 14 |
. . . . . 6
|
| 38 | 37 | adantr 276 |
. . . . 5
|
| 39 | 16, 32, 38 | mpjaodan 803 |
. . . 4
|
| 40 | 22 | a1i 9 |
. . . . . 6
|
| 41 | 33, 40 | ffvelcdmd 5770 |
. . . . 5
|
| 42 | elpri 3689 |
. . . . 5
| |
| 43 | 41, 42 | syl 14 |
. . . 4
|
| 44 | 11, 39, 43 | mpjaodan 803 |
. . 3
|
| 45 | 44 | exlimiv 1644 |
. 2
|
| 46 | 5, 45 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-1o 6560 df-2o 6561 df-er 6678 df-en 6886 |
| This theorem is referenced by: pr2cv2 7365 pr2cv 7366 |
| Copyright terms: Public domain | W3C validator |