ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pr2cv1 Unicode version

Theorem pr2cv1 7324
Description: If an unordered pair is equinumerous to ordinal two, then a part is a set. (Contributed by RP, 21-Oct-2023.)
Assertion
Ref Expression
pr2cv1  |-  ( { A ,  B }  ~~  2o  ->  A  e.  _V )

Proof of Theorem pr2cv1
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 df2o3 6534 . . . 4  |-  2o  =  { (/) ,  1o }
2 ensym 6891 . . . 4  |-  ( { A ,  B }  ~~  2o  ->  2o  ~~  { A ,  B }
)
31, 2eqbrtrrid 4090 . . 3  |-  ( { A ,  B }  ~~  2o  ->  { (/) ,  1o }  ~~  { A ,  B } )
4 bren 6853 . . 3  |-  ( {
(/) ,  1o }  ~~  { A ,  B }  <->  E. f  f : { (/)
,  1o } -1-1-onto-> { A ,  B } )
53, 4sylib 122 . 2  |-  ( { A ,  B }  ~~  2o  ->  E. f 
f : { (/) ,  1o } -1-1-onto-> { A ,  B } )
6 vex 2776 . . . . . . 7  |-  f  e. 
_V
7 0ex 4182 . . . . . . 7  |-  (/)  e.  _V
86, 7fvex 5614 . . . . . 6  |-  ( f `
 (/) )  e.  _V
9 eleq1 2269 . . . . . 6  |-  ( ( f `  (/) )  =  A  ->  ( (
f `  (/) )  e. 
_V 
<->  A  e.  _V )
)
108, 9mpbii 148 . . . . 5  |-  ( ( f `  (/) )  =  A  ->  A  e.  _V )
1110adantl 277 . . . 4  |-  ( ( f : { (/) ,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  A )  ->  A  e.  _V )
12 1oex 6528 . . . . . . . 8  |-  1o  e.  _V
136, 12fvex 5614 . . . . . . 7  |-  ( f `
 1o )  e. 
_V
14 eleq1 2269 . . . . . . 7  |-  ( ( f `  1o )  =  A  ->  (
( f `  1o )  e.  _V  <->  A  e.  _V ) )
1513, 14mpbii 148 . . . . . 6  |-  ( ( f `  1o )  =  A  ->  A  e.  _V )
1615adantl 277 . . . . 5  |-  ( ( ( f : { (/)
,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  /\  ( f `  1o )  =  A
)  ->  A  e.  _V )
17 simplr 528 . . . . . . . 8  |-  ( ( ( f : { (/)
,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  /\  ( f `  1o )  =  B
)  ->  ( f `  (/) )  =  B )
18 simpr 110 . . . . . . . 8  |-  ( ( ( f : { (/)
,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  /\  ( f `  1o )  =  B
)  ->  ( f `  1o )  =  B )
1917, 18eqtr4d 2242 . . . . . . 7  |-  ( ( ( f : { (/)
,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  /\  ( f `  1o )  =  B
)  ->  ( f `  (/) )  =  ( f `  1o ) )
20 f1of1 5538 . . . . . . . . 9  |-  ( f : { (/) ,  1o }
-1-1-onto-> { A ,  B }  ->  f : { (/) ,  1o } -1-1-> { A ,  B } )
2120ad2antrr 488 . . . . . . . 8  |-  ( ( ( f : { (/)
,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  /\  ( f `  1o )  =  B
)  ->  f : { (/) ,  1o } -1-1-> { A ,  B }
)
227prid1 3744 . . . . . . . . 9  |-  (/)  e.  { (/)
,  1o }
2322a1i 9 . . . . . . . 8  |-  ( ( ( f : { (/)
,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  /\  ( f `  1o )  =  B
)  ->  (/)  e.  { (/)
,  1o } )
2412prid2 3745 . . . . . . . . 9  |-  1o  e.  {
(/) ,  1o }
2524a1i 9 . . . . . . . 8  |-  ( ( ( f : { (/)
,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  /\  ( f `  1o )  =  B
)  ->  1o  e.  {
(/) ,  1o } )
26 f1veqaeq 5856 . . . . . . . 8  |-  ( ( f : { (/) ,  1o } -1-1-> { A ,  B }  /\  ( (/) 
e.  { (/) ,  1o }  /\  1o  e.  { (/)
,  1o } ) )  ->  ( (
f `  (/) )  =  ( f `  1o )  ->  (/)  =  1o ) )
2721, 23, 25, 26syl12anc 1248 . . . . . . 7  |-  ( ( ( f : { (/)
,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  /\  ( f `  1o )  =  B
)  ->  ( (
f `  (/) )  =  ( f `  1o )  ->  (/)  =  1o ) )
2819, 27mpd 13 . . . . . 6  |-  ( ( ( f : { (/)
,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  /\  ( f `  1o )  =  B
)  ->  (/)  =  1o )
29 1n0 6536 . . . . . . . 8  |-  1o  =/=  (/)
3029nesymi 2423 . . . . . . 7  |-  -.  (/)  =  1o
3130a1i 9 . . . . . 6  |-  ( ( ( f : { (/)
,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  /\  ( f `  1o )  =  B
)  ->  -.  (/)  =  1o )
3228, 31pm2.21dd 621 . . . . 5  |-  ( ( ( f : { (/)
,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  /\  ( f `  1o )  =  B
)  ->  A  e.  _V )
33 f1of 5539 . . . . . . . 8  |-  ( f : { (/) ,  1o }
-1-1-onto-> { A ,  B }  ->  f : { (/) ,  1o } --> { A ,  B } )
3424a1i 9 . . . . . . . 8  |-  ( f : { (/) ,  1o }
-1-1-onto-> { A ,  B }  ->  1o  e.  { (/) ,  1o } )
3533, 34ffvelcdmd 5734 . . . . . . 7  |-  ( f : { (/) ,  1o }
-1-1-onto-> { A ,  B }  ->  ( f `  1o )  e.  { A ,  B } )
36 elpri 3661 . . . . . . 7  |-  ( ( f `  1o )  e.  { A ,  B }  ->  ( ( f `  1o )  =  A  \/  (
f `  1o )  =  B ) )
3735, 36syl 14 . . . . . 6  |-  ( f : { (/) ,  1o }
-1-1-onto-> { A ,  B }  ->  ( ( f `  1o )  =  A  \/  ( f `  1o )  =  B )
)
3837adantr 276 . . . . 5  |-  ( ( f : { (/) ,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  ->  ( ( f `
 1o )  =  A  \/  ( f `
 1o )  =  B ) )
3916, 32, 38mpjaodan 800 . . . 4  |-  ( ( f : { (/) ,  1o } -1-1-onto-> { A ,  B }  /\  ( f `  (/) )  =  B )  ->  A  e.  _V )
4022a1i 9 . . . . . 6  |-  ( f : { (/) ,  1o }
-1-1-onto-> { A ,  B }  -> 
(/)  e.  { (/) ,  1o } )
4133, 40ffvelcdmd 5734 . . . . 5  |-  ( f : { (/) ,  1o }
-1-1-onto-> { A ,  B }  ->  ( f `  (/) )  e. 
{ A ,  B } )
42 elpri 3661 . . . . 5  |-  ( ( f `  (/) )  e. 
{ A ,  B }  ->  ( ( f `
 (/) )  =  A  \/  ( f `  (/) )  =  B ) )
4341, 42syl 14 . . . 4  |-  ( f : { (/) ,  1o }
-1-1-onto-> { A ,  B }  ->  ( ( f `  (/) )  =  A  \/  ( f `  (/) )  =  B ) )
4411, 39, 43mpjaodan 800 . . 3  |-  ( f : { (/) ,  1o }
-1-1-onto-> { A ,  B }  ->  A  e.  _V )
4544exlimiv 1622 . 2  |-  ( E. f  f : { (/)
,  1o } -1-1-onto-> { A ,  B }  ->  A  e.  _V )
465, 45syl 14 1  |-  ( { A ,  B }  ~~  2o  ->  A  e.  _V )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373   E.wex 1516    e. wcel 2177   _Vcvv 2773   (/)c0 3464   {cpr 3639   class class class wbr 4054   -1-1->wf1 5282   -1-1-onto->wf1o 5284   ` cfv 5285   1oc1o 6513   2oc2o 6514    ~~ cen 6843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-1o 6520  df-2o 6521  df-er 6638  df-en 6846
This theorem is referenced by:  pr2cv2  7325  pr2cv  7326
  Copyright terms: Public domain W3C validator