ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pr1or2 GIF version

Theorem pr1or2 7313
Description: An unordered pair, with decidable equality for the specified elements, has either one or two elements. (Contributed by Jim Kingdon, 7-Jan-2026.)
Assertion
Ref Expression
pr1or2 ((𝐴𝐶𝐵𝐷DECID 𝐴 = 𝐵) → ({𝐴, 𝐵} ≈ 1o ∨ {𝐴, 𝐵} ≈ 2o))

Proof of Theorem pr1or2
StepHypRef Expression
1 dcne 2388 . . 3 (DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵𝐴𝐵))
2 enpr1g 6900 . . . . . . 7 (𝐴𝐶 → {𝐴, 𝐴} ≈ 1o)
32ad2antrr 488 . . . . . 6 (((𝐴𝐶𝐵𝐷) ∧ 𝐴 = 𝐵) → {𝐴, 𝐴} ≈ 1o)
4 preq2 3713 . . . . . . . 8 (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵})
54breq1d 4058 . . . . . . 7 (𝐴 = 𝐵 → ({𝐴, 𝐴} ≈ 1o ↔ {𝐴, 𝐵} ≈ 1o))
65adantl 277 . . . . . 6 (((𝐴𝐶𝐵𝐷) ∧ 𝐴 = 𝐵) → ({𝐴, 𝐴} ≈ 1o ↔ {𝐴, 𝐵} ≈ 1o))
73, 6mpbid 147 . . . . 5 (((𝐴𝐶𝐵𝐷) ∧ 𝐴 = 𝐵) → {𝐴, 𝐵} ≈ 1o)
87orcd 735 . . . 4 (((𝐴𝐶𝐵𝐷) ∧ 𝐴 = 𝐵) → ({𝐴, 𝐵} ≈ 1o ∨ {𝐴, 𝐵} ≈ 2o))
9 pr2ne 7312 . . . . . 6 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))
109biimpar 297 . . . . 5 (((𝐴𝐶𝐵𝐷) ∧ 𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
1110olcd 736 . . . 4 (((𝐴𝐶𝐵𝐷) ∧ 𝐴𝐵) → ({𝐴, 𝐵} ≈ 1o ∨ {𝐴, 𝐵} ≈ 2o))
128, 11jaodan 799 . . 3 (((𝐴𝐶𝐵𝐷) ∧ (𝐴 = 𝐵𝐴𝐵)) → ({𝐴, 𝐵} ≈ 1o ∨ {𝐴, 𝐵} ≈ 2o))
131, 12sylan2b 287 . 2 (((𝐴𝐶𝐵𝐷) ∧ DECID 𝐴 = 𝐵) → ({𝐴, 𝐵} ≈ 1o ∨ {𝐴, 𝐵} ≈ 2o))
14133impa 1197 1 ((𝐴𝐶𝐵𝐷DECID 𝐴 = 𝐵) → ({𝐴, 𝐵} ≈ 1o ∨ {𝐴, 𝐵} ≈ 2o))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  w3a 981   = wceq 1373  wcel 2177  wne 2377  {cpr 3636   class class class wbr 4048  1oc1o 6505  2oc2o 6506  cen 6835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-tr 4148  df-id 4345  df-iord 4418  df-on 4420  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-1o 6512  df-2o 6513  df-er 6630  df-en 6838
This theorem is referenced by:  upgr1elem1  15763
  Copyright terms: Public domain W3C validator