ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmetxrge0 Unicode version

Theorem psmetxrge0 14103
Description: The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.)
Assertion
Ref Expression
psmetxrge0  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> ( 0 [,] +oo ) )

Proof of Theorem psmetxrge0
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 psmetf 14096 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> RR* )
21ffnd 5378 . 2  |-  ( D  e.  (PsMet `  X
)  ->  D  Fn  ( X  X.  X
) )
31ffvelcdmda 5664 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  ( X  X.  X
) )  ->  ( D `  a )  e.  RR* )
4 elxp6 6183 . . . . . . . 8  |-  ( a  e.  ( X  X.  X )  <->  ( a  =  <. ( 1st `  a
) ,  ( 2nd `  a ) >.  /\  (
( 1st `  a
)  e.  X  /\  ( 2nd `  a )  e.  X ) ) )
54simprbi 275 . . . . . . 7  |-  ( a  e.  ( X  X.  X )  ->  (
( 1st `  a
)  e.  X  /\  ( 2nd `  a )  e.  X ) )
6 psmetge0 14102 . . . . . . . 8  |-  ( ( D  e.  (PsMet `  X )  /\  ( 1st `  a )  e.  X  /\  ( 2nd `  a )  e.  X
)  ->  0  <_  ( ( 1st `  a
) D ( 2nd `  a ) ) )
763expb 1205 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  (
( 1st `  a
)  e.  X  /\  ( 2nd `  a )  e.  X ) )  ->  0  <_  (
( 1st `  a
) D ( 2nd `  a ) ) )
85, 7sylan2 286 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  ( X  X.  X
) )  ->  0  <_  ( ( 1st `  a
) D ( 2nd `  a ) ) )
9 1st2nd2 6189 . . . . . . . . 9  |-  ( a  e.  ( X  X.  X )  ->  a  =  <. ( 1st `  a
) ,  ( 2nd `  a ) >. )
109fveq2d 5531 . . . . . . . 8  |-  ( a  e.  ( X  X.  X )  ->  ( D `  a )  =  ( D `  <. ( 1st `  a
) ,  ( 2nd `  a ) >. )
)
11 df-ov 5891 . . . . . . . 8  |-  ( ( 1st `  a ) D ( 2nd `  a
) )  =  ( D `  <. ( 1st `  a ) ,  ( 2nd `  a
) >. )
1210, 11eqtr4di 2238 . . . . . . 7  |-  ( a  e.  ( X  X.  X )  ->  ( D `  a )  =  ( ( 1st `  a ) D ( 2nd `  a ) ) )
1312adantl 277 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  ( X  X.  X
) )  ->  ( D `  a )  =  ( ( 1st `  a ) D ( 2nd `  a ) ) )
148, 13breqtrrd 4043 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  ( X  X.  X
) )  ->  0  <_  ( D `  a
) )
15 elxrge0 9991 . . . . 5  |-  ( ( D `  a )  e.  ( 0 [,] +oo )  <->  ( ( D `
 a )  e. 
RR*  /\  0  <_  ( D `  a ) ) )
163, 14, 15sylanbrc 417 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  ( X  X.  X
) )  ->  ( D `  a )  e.  ( 0 [,] +oo ) )
1716ralrimiva 2560 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  A. a  e.  ( X  X.  X
) ( D `  a )  e.  ( 0 [,] +oo )
)
18 fnfvrnss 5689 . . 3  |-  ( ( D  Fn  ( X  X.  X )  /\  A. a  e.  ( X  X.  X ) ( D `  a )  e.  ( 0 [,] +oo ) )  ->  ran  D 
C_  ( 0 [,] +oo ) )
192, 17, 18syl2anc 411 . 2  |-  ( D  e.  (PsMet `  X
)  ->  ran  D  C_  ( 0 [,] +oo ) )
20 df-f 5232 . 2  |-  ( D : ( X  X.  X ) --> ( 0 [,] +oo )  <->  ( D  Fn  ( X  X.  X
)  /\  ran  D  C_  ( 0 [,] +oo ) ) )
212, 19, 20sylanbrc 417 1  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> ( 0 [,] +oo ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   A.wral 2465    C_ wss 3141   <.cop 3607   class class class wbr 4015    X. cxp 4636   ran crn 4639    Fn wfn 5223   -->wf 5224   ` cfv 5228  (class class class)co 5888   1stc1st 6152   2ndc2nd 6153   0cc0 7824   +oocpnf 8002   RR*cxr 8004    <_ cle 8006   [,]cicc 9904  PsMetcpsmet 13696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-lttrn 7938  ax-pre-ltadd 7940  ax-pre-mulgt0 7941
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-map 6663  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-2 8991  df-xadd 9786  df-icc 9908  df-psmet 13704
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator