ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmetxrge0 Unicode version

Theorem psmetxrge0 14652
Description: The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.)
Assertion
Ref Expression
psmetxrge0  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> ( 0 [,] +oo ) )

Proof of Theorem psmetxrge0
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 psmetf 14645 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> RR* )
21ffnd 5411 . 2  |-  ( D  e.  (PsMet `  X
)  ->  D  Fn  ( X  X.  X
) )
31ffvelcdmda 5700 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  ( X  X.  X
) )  ->  ( D `  a )  e.  RR* )
4 elxp6 6236 . . . . . . . 8  |-  ( a  e.  ( X  X.  X )  <->  ( a  =  <. ( 1st `  a
) ,  ( 2nd `  a ) >.  /\  (
( 1st `  a
)  e.  X  /\  ( 2nd `  a )  e.  X ) ) )
54simprbi 275 . . . . . . 7  |-  ( a  e.  ( X  X.  X )  ->  (
( 1st `  a
)  e.  X  /\  ( 2nd `  a )  e.  X ) )
6 psmetge0 14651 . . . . . . . 8  |-  ( ( D  e.  (PsMet `  X )  /\  ( 1st `  a )  e.  X  /\  ( 2nd `  a )  e.  X
)  ->  0  <_  ( ( 1st `  a
) D ( 2nd `  a ) ) )
763expb 1206 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  (
( 1st `  a
)  e.  X  /\  ( 2nd `  a )  e.  X ) )  ->  0  <_  (
( 1st `  a
) D ( 2nd `  a ) ) )
85, 7sylan2 286 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  ( X  X.  X
) )  ->  0  <_  ( ( 1st `  a
) D ( 2nd `  a ) ) )
9 1st2nd2 6242 . . . . . . . . 9  |-  ( a  e.  ( X  X.  X )  ->  a  =  <. ( 1st `  a
) ,  ( 2nd `  a ) >. )
109fveq2d 5565 . . . . . . . 8  |-  ( a  e.  ( X  X.  X )  ->  ( D `  a )  =  ( D `  <. ( 1st `  a
) ,  ( 2nd `  a ) >. )
)
11 df-ov 5928 . . . . . . . 8  |-  ( ( 1st `  a ) D ( 2nd `  a
) )  =  ( D `  <. ( 1st `  a ) ,  ( 2nd `  a
) >. )
1210, 11eqtr4di 2247 . . . . . . 7  |-  ( a  e.  ( X  X.  X )  ->  ( D `  a )  =  ( ( 1st `  a ) D ( 2nd `  a ) ) )
1312adantl 277 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  ( X  X.  X
) )  ->  ( D `  a )  =  ( ( 1st `  a ) D ( 2nd `  a ) ) )
148, 13breqtrrd 4062 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  ( X  X.  X
) )  ->  0  <_  ( D `  a
) )
15 elxrge0 10070 . . . . 5  |-  ( ( D `  a )  e.  ( 0 [,] +oo )  <->  ( ( D `
 a )  e. 
RR*  /\  0  <_  ( D `  a ) ) )
163, 14, 15sylanbrc 417 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  ( X  X.  X
) )  ->  ( D `  a )  e.  ( 0 [,] +oo ) )
1716ralrimiva 2570 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  A. a  e.  ( X  X.  X
) ( D `  a )  e.  ( 0 [,] +oo )
)
18 fnfvrnss 5725 . . 3  |-  ( ( D  Fn  ( X  X.  X )  /\  A. a  e.  ( X  X.  X ) ( D `  a )  e.  ( 0 [,] +oo ) )  ->  ran  D 
C_  ( 0 [,] +oo ) )
192, 17, 18syl2anc 411 . 2  |-  ( D  e.  (PsMet `  X
)  ->  ran  D  C_  ( 0 [,] +oo ) )
20 df-f 5263 . 2  |-  ( D : ( X  X.  X ) --> ( 0 [,] +oo )  <->  ( D  Fn  ( X  X.  X
)  /\  ran  D  C_  ( 0 [,] +oo ) ) )
212, 19, 20sylanbrc 417 1  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> ( 0 [,] +oo ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475    C_ wss 3157   <.cop 3626   class class class wbr 4034    X. cxp 4662   ran crn 4665    Fn wfn 5254   -->wf 5255   ` cfv 5259  (class class class)co 5925   1stc1st 6205   2ndc2nd 6206   0cc0 7896   +oocpnf 8075   RR*cxr 8077    <_ cle 8079   [,]cicc 9983  PsMetcpsmet 14167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012  ax-pre-mulgt0 8013
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-2 9066  df-xadd 9865  df-icc 9987  df-psmet 14175
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator