ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmetxrge0 Unicode version

Theorem psmetxrge0 13126
Description: The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.)
Assertion
Ref Expression
psmetxrge0  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> ( 0 [,] +oo ) )

Proof of Theorem psmetxrge0
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 psmetf 13119 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> RR* )
21ffnd 5348 . 2  |-  ( D  e.  (PsMet `  X
)  ->  D  Fn  ( X  X.  X
) )
31ffvelrnda 5631 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  ( X  X.  X
) )  ->  ( D `  a )  e.  RR* )
4 elxp6 6148 . . . . . . . 8  |-  ( a  e.  ( X  X.  X )  <->  ( a  =  <. ( 1st `  a
) ,  ( 2nd `  a ) >.  /\  (
( 1st `  a
)  e.  X  /\  ( 2nd `  a )  e.  X ) ) )
54simprbi 273 . . . . . . 7  |-  ( a  e.  ( X  X.  X )  ->  (
( 1st `  a
)  e.  X  /\  ( 2nd `  a )  e.  X ) )
6 psmetge0 13125 . . . . . . . 8  |-  ( ( D  e.  (PsMet `  X )  /\  ( 1st `  a )  e.  X  /\  ( 2nd `  a )  e.  X
)  ->  0  <_  ( ( 1st `  a
) D ( 2nd `  a ) ) )
763expb 1199 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  (
( 1st `  a
)  e.  X  /\  ( 2nd `  a )  e.  X ) )  ->  0  <_  (
( 1st `  a
) D ( 2nd `  a ) ) )
85, 7sylan2 284 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  ( X  X.  X
) )  ->  0  <_  ( ( 1st `  a
) D ( 2nd `  a ) ) )
9 1st2nd2 6154 . . . . . . . . 9  |-  ( a  e.  ( X  X.  X )  ->  a  =  <. ( 1st `  a
) ,  ( 2nd `  a ) >. )
109fveq2d 5500 . . . . . . . 8  |-  ( a  e.  ( X  X.  X )  ->  ( D `  a )  =  ( D `  <. ( 1st `  a
) ,  ( 2nd `  a ) >. )
)
11 df-ov 5856 . . . . . . . 8  |-  ( ( 1st `  a ) D ( 2nd `  a
) )  =  ( D `  <. ( 1st `  a ) ,  ( 2nd `  a
) >. )
1210, 11eqtr4di 2221 . . . . . . 7  |-  ( a  e.  ( X  X.  X )  ->  ( D `  a )  =  ( ( 1st `  a ) D ( 2nd `  a ) ) )
1312adantl 275 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  ( X  X.  X
) )  ->  ( D `  a )  =  ( ( 1st `  a ) D ( 2nd `  a ) ) )
148, 13breqtrrd 4017 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  ( X  X.  X
) )  ->  0  <_  ( D `  a
) )
15 elxrge0 9935 . . . . 5  |-  ( ( D `  a )  e.  ( 0 [,] +oo )  <->  ( ( D `
 a )  e. 
RR*  /\  0  <_  ( D `  a ) ) )
163, 14, 15sylanbrc 415 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  ( X  X.  X
) )  ->  ( D `  a )  e.  ( 0 [,] +oo ) )
1716ralrimiva 2543 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  A. a  e.  ( X  X.  X
) ( D `  a )  e.  ( 0 [,] +oo )
)
18 fnfvrnss 5656 . . 3  |-  ( ( D  Fn  ( X  X.  X )  /\  A. a  e.  ( X  X.  X ) ( D `  a )  e.  ( 0 [,] +oo ) )  ->  ran  D 
C_  ( 0 [,] +oo ) )
192, 17, 18syl2anc 409 . 2  |-  ( D  e.  (PsMet `  X
)  ->  ran  D  C_  ( 0 [,] +oo ) )
20 df-f 5202 . 2  |-  ( D : ( X  X.  X ) --> ( 0 [,] +oo )  <->  ( D  Fn  ( X  X.  X
)  /\  ran  D  C_  ( 0 [,] +oo ) ) )
212, 19, 20sylanbrc 415 1  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> ( 0 [,] +oo ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   A.wral 2448    C_ wss 3121   <.cop 3586   class class class wbr 3989    X. cxp 4609   ran crn 4612    Fn wfn 5193   -->wf 5194   ` cfv 5198  (class class class)co 5853   1stc1st 6117   2ndc2nd 6118   0cc0 7774   +oocpnf 7951   RR*cxr 7953    <_ cle 7955   [,]cicc 9848  PsMetcpsmet 12773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-lttrn 7888  ax-pre-ltadd 7890  ax-pre-mulgt0 7891
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-2 8937  df-xadd 9730  df-icc 9852  df-psmet 12781
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator