ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmettri Unicode version

Theorem psmettri 14887
Description: Triangle inequality for the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
psmettri  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D B )  <_  (
( A D C ) +e ( C D B ) ) )

Proof of Theorem psmettri
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  D  e.  (PsMet `  X ) )
2 simpr3 1008 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  C  e.  X )
3 simpr1 1006 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  A  e.  X )
4 simpr2 1007 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  B  e.  X )
5 psmettri2 14885 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
)  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) )
61, 2, 3, 4, 5syl13anc 1252 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) )
7 psmetsym 14886 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  C  e.  X  /\  A  e.  X )  ->  ( C D A )  =  ( A D C ) )
81, 2, 3, 7syl3anc 1250 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( C D A )  =  ( A D C ) )
98oveq1d 5977 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( C D A ) +e ( C D B ) )  =  ( ( A D C ) +e
( C D B ) ) )
106, 9breqtrd 4080 1  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D B )  <_  (
( A D C ) +e ( C D B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177   class class class wbr 4054   ` cfv 5285  (class class class)co 5962    <_ cle 8138   +ecxad 9922  PsMetcpsmet 14382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1re 8049  ax-addrcl 8052  ax-0id 8063  ax-rnegex 8064  ax-pre-ltirr 8067  ax-pre-apti 8070
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-map 6755  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-xadd 9925  df-psmet 14390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator