ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmettri Unicode version

Theorem psmettri 12536
Description: Triangle inequality for the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
psmettri  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D B )  <_  (
( A D C ) +e ( C D B ) ) )

Proof of Theorem psmettri
StepHypRef Expression
1 simpl 108 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  D  e.  (PsMet `  X ) )
2 simpr3 990 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  C  e.  X )
3 simpr1 988 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  A  e.  X )
4 simpr2 989 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  B  e.  X )
5 psmettri2 12534 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
)  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) )
61, 2, 3, 4, 5syl13anc 1219 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) )
7 psmetsym 12535 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  C  e.  X  /\  A  e.  X )  ->  ( C D A )  =  ( A D C ) )
81, 2, 3, 7syl3anc 1217 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( C D A )  =  ( A D C ) )
98oveq1d 5796 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( C D A ) +e ( C D B ) )  =  ( ( A D C ) +e
( C D B ) ) )
106, 9breqtrd 3961 1  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D B )  <_  (
( A D C ) +e ( C D B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1332    e. wcel 1481   class class class wbr 3936   ` cfv 5130  (class class class)co 5781    <_ cle 7824   +ecxad 9586  PsMetcpsmet 12185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735  ax-1re 7737  ax-addrcl 7740  ax-0id 7751  ax-rnegex 7752  ax-pre-ltirr 7755  ax-pre-apti 7758
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-fv 5138  df-ov 5784  df-oprab 5785  df-mpo 5786  df-map 6551  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-xadd 9589  df-psmet 12193
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator