ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmetge0 Unicode version

Theorem psmetge0 14918
Description: The distance function of a pseudometric space is nonnegative. (Contributed by Thierry Arnoux, 7-Feb-2018.) (Revised by Jim Kingdon, 19-Apr-2023.)
Assertion
Ref Expression
psmetge0  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  0  <_  ( A D B ) )

Proof of Theorem psmetge0
StepHypRef Expression
1 0xr 8154 . . . 4  |-  0  e.  RR*
2 xaddid1 10019 . . . 4  |-  ( 0  e.  RR*  ->  ( 0 +e 0 )  =  0 )
31, 2ax-mp 5 . . 3  |-  ( 0 +e 0 )  =  0
4 psmet0 14914 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  B  e.  X )  ->  ( B D B )  =  0 )
543adant2 1019 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( B D B )  =  0 )
6 simp1 1000 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  D  e.  (PsMet `  X )
)
7 simp2 1001 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  A  e.  X )
8 simp3 1002 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  B  e.  X )
9 psmettri2 14915 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  B  e.  X )
)  ->  ( B D B )  <_  (
( A D B ) +e ( A D B ) ) )
106, 7, 8, 8, 9syl13anc 1252 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( B D B )  <_ 
( ( A D B ) +e
( A D B ) ) )
115, 10eqbrtrrd 4083 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  0  <_  ( ( A D B ) +e
( A D B ) ) )
123, 11eqbrtrid 4094 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  (
0 +e 0 )  <_  ( ( A D B ) +e ( A D B ) ) )
13 psmetcl 14913 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  e. 
RR* )
14 xleaddadd 10044 . . 3  |-  ( ( 0  e.  RR*  /\  ( A D B )  e. 
RR* )  ->  (
0  <_  ( A D B )  <->  ( 0 +e 0 )  <_  ( ( A D B ) +e ( A D B ) ) ) )
151, 13, 14sylancr 414 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  (
0  <_  ( A D B )  <->  ( 0 +e 0 )  <_  ( ( A D B ) +e ( A D B ) ) ) )
1612, 15mpbird 167 1  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  0  <_  ( A D B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   0cc0 7960   RR*cxr 8141    <_ cle 8143   +ecxad 9927  PsMetcpsmet 14412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076  ax-pre-mulgt0 8077
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-2 9130  df-xadd 9930  df-psmet 14420
This theorem is referenced by:  psmetxrge0  14919  psmetlecl  14921  distspace  14922  xblpnfps  14985  xblss2ps  14991
  Copyright terms: Public domain W3C validator