ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmetge0 Unicode version

Theorem psmetge0 12971
Description: The distance function of a pseudometric space is nonnegative. (Contributed by Thierry Arnoux, 7-Feb-2018.) (Revised by Jim Kingdon, 19-Apr-2023.)
Assertion
Ref Expression
psmetge0  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  0  <_  ( A D B ) )

Proof of Theorem psmetge0
StepHypRef Expression
1 0xr 7945 . . . 4  |-  0  e.  RR*
2 xaddid1 9798 . . . 4  |-  ( 0  e.  RR*  ->  ( 0 +e 0 )  =  0 )
31, 2ax-mp 5 . . 3  |-  ( 0 +e 0 )  =  0
4 psmet0 12967 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  B  e.  X )  ->  ( B D B )  =  0 )
543adant2 1006 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( B D B )  =  0 )
6 simp1 987 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  D  e.  (PsMet `  X )
)
7 simp2 988 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  A  e.  X )
8 simp3 989 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  B  e.  X )
9 psmettri2 12968 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  B  e.  X )
)  ->  ( B D B )  <_  (
( A D B ) +e ( A D B ) ) )
106, 7, 8, 8, 9syl13anc 1230 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( B D B )  <_ 
( ( A D B ) +e
( A D B ) ) )
115, 10eqbrtrrd 4006 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  0  <_  ( ( A D B ) +e
( A D B ) ) )
123, 11eqbrtrid 4017 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  (
0 +e 0 )  <_  ( ( A D B ) +e ( A D B ) ) )
13 psmetcl 12966 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  e. 
RR* )
14 xleaddadd 9823 . . 3  |-  ( ( 0  e.  RR*  /\  ( A D B )  e. 
RR* )  ->  (
0  <_  ( A D B )  <->  ( 0 +e 0 )  <_  ( ( A D B ) +e ( A D B ) ) ) )
151, 13, 14sylancr 411 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  (
0  <_  ( A D B )  <->  ( 0 +e 0 )  <_  ( ( A D B ) +e ( A D B ) ) ) )
1612, 15mpbird 166 1  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  0  <_  ( A D B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   0cc0 7753   RR*cxr 7932    <_ cle 7934   +ecxad 9706  PsMetcpsmet 12619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-lttrn 7867  ax-pre-ltadd 7869  ax-pre-mulgt0 7870
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-2 8916  df-xadd 9709  df-psmet 12627
This theorem is referenced by:  psmetxrge0  12972  psmetlecl  12974  distspace  12975  xblpnfps  13038  xblss2ps  13044
  Copyright terms: Public domain W3C validator