ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusin GIF version

Theorem qusin 13354
Description: Restrict the equivalence relation in a quotient structure to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
qusin.u (𝜑𝑈 = (𝑅 /s ))
qusin.v (𝜑𝑉 = (Base‘𝑅))
qusin.e (𝜑𝑊)
qusin.r (𝜑𝑅𝑍)
qusin.s (𝜑 → ( 𝑉) ⊆ 𝑉)
Assertion
Ref Expression
qusin (𝜑𝑈 = (𝑅 /s ( ∩ (𝑉 × 𝑉))))

Proof of Theorem qusin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 qusin.s . . . . 5 (𝜑 → ( 𝑉) ⊆ 𝑉)
2 ecinxp 6755 . . . . 5 ((( 𝑉) ⊆ 𝑉𝑥𝑉) → [𝑥] = [𝑥]( ∩ (𝑉 × 𝑉)))
31, 2sylan 283 . . . 4 ((𝜑𝑥𝑉) → [𝑥] = [𝑥]( ∩ (𝑉 × 𝑉)))
43mpteq2dva 4173 . . 3 (𝜑 → (𝑥𝑉 ↦ [𝑥] ) = (𝑥𝑉 ↦ [𝑥]( ∩ (𝑉 × 𝑉))))
54oveq1d 6015 . 2 (𝜑 → ((𝑥𝑉 ↦ [𝑥] ) “s 𝑅) = ((𝑥𝑉 ↦ [𝑥]( ∩ (𝑉 × 𝑉))) “s 𝑅))
6 qusin.u . . 3 (𝜑𝑈 = (𝑅 /s ))
7 qusin.v . . 3 (𝜑𝑉 = (Base‘𝑅))
8 eqid 2229 . . 3 (𝑥𝑉 ↦ [𝑥] ) = (𝑥𝑉 ↦ [𝑥] )
9 qusin.e . . 3 (𝜑𝑊)
10 qusin.r . . 3 (𝜑𝑅𝑍)
116, 7, 8, 9, 10qusval 13351 . 2 (𝜑𝑈 = ((𝑥𝑉 ↦ [𝑥] ) “s 𝑅))
12 eqidd 2230 . . 3 (𝜑 → (𝑅 /s ( ∩ (𝑉 × 𝑉))) = (𝑅 /s ( ∩ (𝑉 × 𝑉))))
13 eqid 2229 . . 3 (𝑥𝑉 ↦ [𝑥]( ∩ (𝑉 × 𝑉))) = (𝑥𝑉 ↦ [𝑥]( ∩ (𝑉 × 𝑉)))
14 inex1g 4219 . . . 4 ( 𝑊 → ( ∩ (𝑉 × 𝑉)) ∈ V)
159, 14syl 14 . . 3 (𝜑 → ( ∩ (𝑉 × 𝑉)) ∈ V)
1612, 7, 13, 15, 10qusval 13351 . 2 (𝜑 → (𝑅 /s ( ∩ (𝑉 × 𝑉))) = ((𝑥𝑉 ↦ [𝑥]( ∩ (𝑉 × 𝑉))) “s 𝑅))
175, 11, 163eqtr4d 2272 1 (𝜑𝑈 = (𝑅 /s ( ∩ (𝑉 × 𝑉))))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  cin 3196  wss 3197  cmpt 4144   × cxp 4716  cima 4721  cfv 5317  (class class class)co 6000  [cec 6676  Basecbs 13027  s cimas 13327   /s cqus 13328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-ec 6680  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-mulr 13119  df-iimas 13330  df-qus 13331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator