| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qusin | GIF version | ||
| Description: Restrict the equivalence relation in a quotient structure to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| qusin.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
| qusin.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| qusin.e | ⊢ (𝜑 → ∼ ∈ 𝑊) |
| qusin.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| qusin.s | ⊢ (𝜑 → ( ∼ “ 𝑉) ⊆ 𝑉) |
| Ref | Expression |
|---|---|
| qusin | ⊢ (𝜑 → 𝑈 = (𝑅 /s ( ∼ ∩ (𝑉 × 𝑉)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusin.s | . . . . 5 ⊢ (𝜑 → ( ∼ “ 𝑉) ⊆ 𝑉) | |
| 2 | ecinxp 6755 | . . . . 5 ⊢ ((( ∼ “ 𝑉) ⊆ 𝑉 ∧ 𝑥 ∈ 𝑉) → [𝑥] ∼ = [𝑥]( ∼ ∩ (𝑉 × 𝑉))) | |
| 3 | 1, 2 | sylan 283 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → [𝑥] ∼ = [𝑥]( ∼ ∩ (𝑉 × 𝑉))) |
| 4 | 3 | mpteq2dva 4173 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) = (𝑥 ∈ 𝑉 ↦ [𝑥]( ∼ ∩ (𝑉 × 𝑉)))) |
| 5 | 4 | oveq1d 6015 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) “s 𝑅) = ((𝑥 ∈ 𝑉 ↦ [𝑥]( ∼ ∩ (𝑉 × 𝑉))) “s 𝑅)) |
| 6 | qusin.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
| 7 | qusin.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 8 | eqid 2229 | . . 3 ⊢ (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
| 9 | qusin.e | . . 3 ⊢ (𝜑 → ∼ ∈ 𝑊) | |
| 10 | qusin.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
| 11 | 6, 7, 8, 9, 10 | qusval 13351 | . 2 ⊢ (𝜑 → 𝑈 = ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) “s 𝑅)) |
| 12 | eqidd 2230 | . . 3 ⊢ (𝜑 → (𝑅 /s ( ∼ ∩ (𝑉 × 𝑉))) = (𝑅 /s ( ∼ ∩ (𝑉 × 𝑉)))) | |
| 13 | eqid 2229 | . . 3 ⊢ (𝑥 ∈ 𝑉 ↦ [𝑥]( ∼ ∩ (𝑉 × 𝑉))) = (𝑥 ∈ 𝑉 ↦ [𝑥]( ∼ ∩ (𝑉 × 𝑉))) | |
| 14 | inex1g 4219 | . . . 4 ⊢ ( ∼ ∈ 𝑊 → ( ∼ ∩ (𝑉 × 𝑉)) ∈ V) | |
| 15 | 9, 14 | syl 14 | . . 3 ⊢ (𝜑 → ( ∼ ∩ (𝑉 × 𝑉)) ∈ V) |
| 16 | 12, 7, 13, 15, 10 | qusval 13351 | . 2 ⊢ (𝜑 → (𝑅 /s ( ∼ ∩ (𝑉 × 𝑉))) = ((𝑥 ∈ 𝑉 ↦ [𝑥]( ∼ ∩ (𝑉 × 𝑉))) “s 𝑅)) |
| 17 | 5, 11, 16 | 3eqtr4d 2272 | 1 ⊢ (𝜑 → 𝑈 = (𝑅 /s ( ∼ ∩ (𝑉 × 𝑉)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∩ cin 3196 ⊆ wss 3197 ↦ cmpt 4144 × cxp 4716 “ cima 4721 ‘cfv 5317 (class class class)co 6000 [cec 6676 Basecbs 13027 “s cimas 13327 /s cqus 13328 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-ec 6680 df-inn 9107 df-2 9165 df-3 9166 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-mulr 13119 df-iimas 13330 df-qus 13331 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |