ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringsrg Unicode version

Theorem ringsrg 13016
Description: Any ring is also a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018.)
Assertion
Ref Expression
ringsrg  |-  ( R  e.  Ring  ->  R  e. SRing
)

Proof of Theorem ringsrg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringcmn 13008 . 2  |-  ( R  e.  Ring  ->  R  e. CMnd
)
2 eqid 2175 . . 3  |-  (mulGrp `  R )  =  (mulGrp `  R )
32ringmgp 12978 . 2  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  Mnd )
4 eqid 2175 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
5 eqid 2175 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
6 eqid 2175 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
74, 2, 5, 6isring 12976 . . . 4  |-  ( R  e.  Ring  <->  ( R  e. 
Grp  /\  (mulGrp `  R
)  e.  Mnd  /\  A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) ) )
87simp3bi 1014 . . 3  |-  ( R  e.  Ring  ->  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) )
9 eqid 2175 . . . . . 6  |-  ( 0g
`  R )  =  ( 0g `  R
)
104, 6, 9ringlz 13014 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  (
( 0g `  R
) ( .r `  R ) x )  =  ( 0g `  R ) )
114, 6, 9ringrz 13015 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  (
x ( .r `  R ) ( 0g
`  R ) )  =  ( 0g `  R ) )
1210, 11jca 306 . . . 4  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  (
( ( 0g `  R ) ( .r
`  R ) x )  =  ( 0g
`  R )  /\  ( x ( .r
`  R ) ( 0g `  R ) )  =  ( 0g
`  R ) ) )
1312ralrimiva 2548 . . 3  |-  ( R  e.  Ring  ->  A. x  e.  ( Base `  R
) ( ( ( 0g `  R ) ( .r `  R
) x )  =  ( 0g `  R
)  /\  ( x
( .r `  R
) ( 0g `  R ) )  =  ( 0g `  R
) ) )
14 r19.26 2601 . . 3  |-  ( A. x  e.  ( Base `  R ) ( A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) )  /\  ( ( ( 0g `  R ) ( .r `  R
) x )  =  ( 0g `  R
)  /\  ( x
( .r `  R
) ( 0g `  R ) )  =  ( 0g `  R
) ) )  <->  ( A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) )  /\  A. x  e.  ( Base `  R
) ( ( ( 0g `  R ) ( .r `  R
) x )  =  ( 0g `  R
)  /\  ( x
( .r `  R
) ( 0g `  R ) )  =  ( 0g `  R
) ) ) )
158, 13, 14sylanbrc 417 . 2  |-  ( R  e.  Ring  ->  A. x  e.  ( Base `  R
) ( A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) )  /\  ( ( ( 0g `  R ) ( .r `  R
) x )  =  ( 0g `  R
)  /\  ( x
( .r `  R
) ( 0g `  R ) )  =  ( 0g `  R
) ) ) )
164, 2, 5, 6, 9issrg 12941 . 2  |-  ( R  e. SRing 
<->  ( R  e. CMnd  /\  (mulGrp `  R )  e. 
Mnd  /\  A. x  e.  ( Base `  R
) ( A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) )  /\  ( ( ( 0g `  R ) ( .r `  R
) x )  =  ( 0g `  R
)  /\  ( x
( .r `  R
) ( 0g `  R ) )  =  ( 0g `  R
) ) ) ) )
171, 3, 15, 16syl3anbrc 1181 1  |-  ( R  e.  Ring  ->  R  e. SRing
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146   A.wral 2453   ` cfv 5208  (class class class)co 5865   Basecbs 12427   +g cplusg 12491   .rcmulr 12492   0gc0g 12625   Mndcmnd 12681   Grpcgrp 12737  CMndccmn 12884  mulGrpcmgp 12925  SRingcsrg 12939   Ringcrg 12972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-pre-ltirr 7898  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-ltxr 7971  df-inn 8891  df-2 8949  df-3 8950  df-ndx 12430  df-slot 12431  df-base 12433  df-sets 12434  df-plusg 12504  df-mulr 12505  df-0g 12627  df-mgm 12639  df-sgrp 12672  df-mnd 12682  df-grp 12740  df-minusg 12741  df-cmn 12886  df-abl 12887  df-mgp 12926  df-ur 12936  df-srg 12940  df-ring 12974
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator