ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringsrg Unicode version

Theorem ringsrg 13229
Description: Any ring is also a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018.)
Assertion
Ref Expression
ringsrg  |-  ( R  e.  Ring  ->  R  e. SRing
)

Proof of Theorem ringsrg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringcmn 13221 . 2  |-  ( R  e.  Ring  ->  R  e. CMnd
)
2 eqid 2177 . . 3  |-  (mulGrp `  R )  =  (mulGrp `  R )
32ringmgp 13190 . 2  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  Mnd )
4 eqid 2177 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
5 eqid 2177 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
6 eqid 2177 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
74, 2, 5, 6isring 13188 . . . 4  |-  ( R  e.  Ring  <->  ( R  e. 
Grp  /\  (mulGrp `  R
)  e.  Mnd  /\  A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) ) )
87simp3bi 1014 . . 3  |-  ( R  e.  Ring  ->  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) )
9 eqid 2177 . . . . . 6  |-  ( 0g
`  R )  =  ( 0g `  R
)
104, 6, 9ringlz 13227 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  (
( 0g `  R
) ( .r `  R ) x )  =  ( 0g `  R ) )
114, 6, 9ringrz 13228 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  (
x ( .r `  R ) ( 0g
`  R ) )  =  ( 0g `  R ) )
1210, 11jca 306 . . . 4  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  (
( ( 0g `  R ) ( .r
`  R ) x )  =  ( 0g
`  R )  /\  ( x ( .r
`  R ) ( 0g `  R ) )  =  ( 0g
`  R ) ) )
1312ralrimiva 2550 . . 3  |-  ( R  e.  Ring  ->  A. x  e.  ( Base `  R
) ( ( ( 0g `  R ) ( .r `  R
) x )  =  ( 0g `  R
)  /\  ( x
( .r `  R
) ( 0g `  R ) )  =  ( 0g `  R
) ) )
14 r19.26 2603 . . 3  |-  ( A. x  e.  ( Base `  R ) ( A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) )  /\  ( ( ( 0g `  R ) ( .r `  R
) x )  =  ( 0g `  R
)  /\  ( x
( .r `  R
) ( 0g `  R ) )  =  ( 0g `  R
) ) )  <->  ( A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) )  /\  A. x  e.  ( Base `  R
) ( ( ( 0g `  R ) ( .r `  R
) x )  =  ( 0g `  R
)  /\  ( x
( .r `  R
) ( 0g `  R ) )  =  ( 0g `  R
) ) ) )
158, 13, 14sylanbrc 417 . 2  |-  ( R  e.  Ring  ->  A. x  e.  ( Base `  R
) ( A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) )  /\  ( ( ( 0g `  R ) ( .r `  R
) x )  =  ( 0g `  R
)  /\  ( x
( .r `  R
) ( 0g `  R ) )  =  ( 0g `  R
) ) ) )
164, 2, 5, 6, 9issrg 13153 . 2  |-  ( R  e. SRing 
<->  ( R  e. CMnd  /\  (mulGrp `  R )  e. 
Mnd  /\  A. x  e.  ( Base `  R
) ( A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) )  /\  ( ( ( 0g `  R ) ( .r `  R
) x )  =  ( 0g `  R
)  /\  ( x
( .r `  R
) ( 0g `  R ) )  =  ( 0g `  R
) ) ) ) )
171, 3, 15, 16syl3anbrc 1181 1  |-  ( R  e.  Ring  ->  R  e. SRing
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538   .rcmulr 12539   0gc0g 12710   Mndcmnd 12822   Grpcgrp 12882  CMndccmn 13093  mulGrpcmgp 13135  SRingcsrg 13151   Ringcrg 13184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-plusg 12551  df-mulr 12552  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886  df-cmn 13095  df-abl 13096  df-mgp 13136  df-ur 13148  df-srg 13152  df-ring 13186
This theorem is referenced by:  dvdsrcl2  13273  dvdsrid  13274  dvdsrtr  13275  dvdsrmul1  13276  dvdsrneg  13277  dvdsr01  13278  dvdsr02  13279  1unit  13281  opprunitd  13284  crngunit  13285  unitmulcl  13287  unitmulclb  13288  unitgrp  13290  unitabl  13291  unitgrpid  13292  unitsubm  13293  unitinvcl  13297  unitinvinv  13298  ringinvcl  13299  unitlinv  13300  unitrinv  13301  unitnegcl  13304  dvrvald  13308  unitdvcl  13310  dvrid  13311  dvrcan1  13314  dvrcan3  13315  dvreq1  13316  dvrdir  13317  rdivmuldivd  13318  unitpropdg  13322  invrpropdg  13323  subrgdvds  13361  subrguss  13362  subrginv  13363  subrgunit  13365  subrgugrp  13366  subrgintm  13369  dvdsrzring  13532
  Copyright terms: Public domain W3C validator