| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > crre | Unicode version | ||
| Description: The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| Ref | Expression |
|---|---|
| crre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn 8029 |
. . . 4
| |
| 2 | ax-icn 7991 |
. . . . 5
| |
| 3 | recn 8029 |
. . . . 5
| |
| 4 | mulcl 8023 |
. . . . 5
| |
| 5 | 2, 3, 4 | sylancr 414 |
. . . 4
|
| 6 | addcl 8021 |
. . . 4
| |
| 7 | 1, 5, 6 | syl2an 289 |
. . 3
|
| 8 | reval 11031 |
. . 3
| |
| 9 | 7, 8 | syl 14 |
. 2
|
| 10 | cjcl 11030 |
. . . . . 6
| |
| 11 | 7, 10 | syl 14 |
. . . . 5
|
| 12 | 7, 11 | addcld 8063 |
. . . 4
|
| 13 | 12 | halfcld 9253 |
. . 3
|
| 14 | 1 | adantr 276 |
. . 3
|
| 15 | recl 11035 |
. . . . . . 7
| |
| 16 | 7, 15 | syl 14 |
. . . . . 6
|
| 17 | 9, 16 | eqeltrrd 2274 |
. . . . 5
|
| 18 | simpl 109 |
. . . . 5
| |
| 19 | 17, 18 | resubcld 8424 |
. . . 4
|
| 20 | 2 | a1i 9 |
. . . . . . 7
|
| 21 | 3 | adantl 277 |
. . . . . . . 8
|
| 22 | 2, 21, 4 | sylancr 414 |
. . . . . . 7
|
| 23 | 7, 11 | subcld 8354 |
. . . . . . . 8
|
| 24 | 23 | halfcld 9253 |
. . . . . . 7
|
| 25 | 20, 22, 24 | subdid 8457 |
. . . . . 6
|
| 26 | 14, 22, 14 | pnpcand 8391 |
. . . . . . . . . . . . . 14
|
| 27 | 22, 14, 22 | pnpcan2d 8392 |
. . . . . . . . . . . . . 14
|
| 28 | 26, 27 | eqtr4d 2232 |
. . . . . . . . . . . . 13
|
| 29 | 28 | oveq1d 5940 |
. . . . . . . . . . . 12
|
| 30 | 14, 14 | addcld 8063 |
. . . . . . . . . . . . 13
|
| 31 | 7, 11, 30 | addsubd 8375 |
. . . . . . . . . . . 12
|
| 32 | 22, 22 | addcld 8063 |
. . . . . . . . . . . . 13
|
| 33 | 32, 7, 11 | subsubd 8382 |
. . . . . . . . . . . 12
|
| 34 | 29, 31, 33 | 3eqtr4d 2239 |
. . . . . . . . . . 11
|
| 35 | 14 | 2timesd 9251 |
. . . . . . . . . . . 12
|
| 36 | 35 | oveq2d 5941 |
. . . . . . . . . . 11
|
| 37 | 22 | 2timesd 9251 |
. . . . . . . . . . . 12
|
| 38 | 37 | oveq1d 5940 |
. . . . . . . . . . 11
|
| 39 | 34, 36, 38 | 3eqtr4d 2239 |
. . . . . . . . . 10
|
| 40 | 39 | oveq1d 5940 |
. . . . . . . . 9
|
| 41 | 2cn 9078 |
. . . . . . . . . . 11
| |
| 42 | mulcl 8023 |
. . . . . . . . . . 11
| |
| 43 | 41, 14, 42 | sylancr 414 |
. . . . . . . . . 10
|
| 44 | 41 | a1i 9 |
. . . . . . . . . 10
|
| 45 | 2ap0 9100 |
. . . . . . . . . . 11
| |
| 46 | 45 | a1i 9 |
. . . . . . . . . 10
|
| 47 | 12, 43, 44, 46 | divsubdirapd 8874 |
. . . . . . . . 9
|
| 48 | mulcl 8023 |
. . . . . . . . . . 11
| |
| 49 | 41, 22, 48 | sylancr 414 |
. . . . . . . . . 10
|
| 50 | 49, 23, 44, 46 | divsubdirapd 8874 |
. . . . . . . . 9
|
| 51 | 40, 47, 50 | 3eqtr3d 2237 |
. . . . . . . 8
|
| 52 | 14, 44, 46 | divcanap3d 8839 |
. . . . . . . . 9
|
| 53 | 52 | oveq2d 5941 |
. . . . . . . 8
|
| 54 | 22, 44, 46 | divcanap3d 8839 |
. . . . . . . . 9
|
| 55 | 54 | oveq1d 5940 |
. . . . . . . 8
|
| 56 | 51, 53, 55 | 3eqtr3d 2237 |
. . . . . . 7
|
| 57 | 56 | oveq2d 5941 |
. . . . . 6
|
| 58 | 20, 20, 21 | mulassd 8067 |
. . . . . . 7
|
| 59 | 20, 23, 44, 46 | divassapd 8870 |
. . . . . . 7
|
| 60 | 58, 59 | oveq12d 5943 |
. . . . . 6
|
| 61 | 25, 57, 60 | 3eqtr4d 2239 |
. . . . 5
|
| 62 | ixi 8627 |
. . . . . . . 8
| |
| 63 | neg1rr 9113 |
. . . . . . . 8
| |
| 64 | 62, 63 | eqeltri 2269 |
. . . . . . 7
|
| 65 | simpr 110 |
. . . . . . 7
| |
| 66 | remulcl 8024 |
. . . . . . 7
| |
| 67 | 64, 65, 66 | sylancr 414 |
. . . . . 6
|
| 68 | cjth 11028 |
. . . . . . . . 9
| |
| 69 | 68 | simprd 114 |
. . . . . . . 8
|
| 70 | 7, 69 | syl 14 |
. . . . . . 7
|
| 71 | 70 | rehalfcld 9255 |
. . . . . 6
|
| 72 | 67, 71 | resubcld 8424 |
. . . . 5
|
| 73 | 61, 72 | eqeltrd 2273 |
. . . 4
|
| 74 | rimul 8629 |
. . . 4
| |
| 75 | 19, 73, 74 | syl2anc 411 |
. . 3
|
| 76 | 13, 14, 75 | subeq0d 8362 |
. 2
|
| 77 | 9, 76 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-2 9066 df-cj 11024 df-re 11025 |
| This theorem is referenced by: crim 11040 replim 11041 mulreap 11046 recj 11049 reneg 11050 readd 11051 remullem 11053 rei 11081 crrei 11118 crred 11158 rennim 11184 absreimsq 11249 4sqlem4 12586 2sqlem2 15440 |
| Copyright terms: Public domain | W3C validator |