ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crre Unicode version

Theorem crre 10861
Description: The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
crre  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  A )

Proof of Theorem crre
StepHypRef Expression
1 recn 7943 . . . 4  |-  ( A  e.  RR  ->  A  e.  CC )
2 ax-icn 7905 . . . . 5  |-  _i  e.  CC
3 recn 7943 . . . . 5  |-  ( B  e.  RR  ->  B  e.  CC )
4 mulcl 7937 . . . . 5  |-  ( ( _i  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
52, 3, 4sylancr 414 . . . 4  |-  ( B  e.  RR  ->  (
_i  x.  B )  e.  CC )
6 addcl 7935 . . . 4  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( A  +  ( _i  x.  B
) )  e.  CC )
71, 5, 6syl2an 289 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  ( _i  x.  B ) )  e.  CC )
8 reval 10853 . . 3  |-  ( ( A  +  ( _i  x.  B ) )  e.  CC  ->  (
Re `  ( A  +  ( _i  x.  B ) ) )  =  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) )
97, 8syl 14 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) )
10 cjcl 10852 . . . . . 6  |-  ( ( A  +  ( _i  x.  B ) )  e.  CC  ->  (
* `  ( A  +  ( _i  x.  B ) ) )  e.  CC )
117, 10syl 14 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( * `  ( A  +  ( _i  x.  B ) ) )  e.  CC )
127, 11addcld 7975 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  ( _i  x.  B
) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  e.  CC )
1312halfcld 9161 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  e.  CC )
141adantr 276 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  CC )
15 recl 10857 . . . . . . 7  |-  ( ( A  +  ( _i  x.  B ) )  e.  CC  ->  (
Re `  ( A  +  ( _i  x.  B ) ) )  e.  RR )
167, 15syl 14 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  e.  RR )
179, 16eqeltrrd 2255 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  e.  RR )
18 simpl 109 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  RR )
1917, 18resubcld 8336 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  A
)  e.  RR )
202a1i 9 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  _i  e.  CC )
213adantl 277 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  CC )
222, 21, 4sylancr 414 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( _i  x.  B
)  e.  CC )
237, 11subcld 8266 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) )  e.  CC )
2423halfcld 9161 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  e.  CC )
2520, 22, 24subdid 8369 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( _i  x.  (
( _i  x.  B
)  -  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) )  /  2 ) ) )  =  ( ( _i  x.  ( _i  x.  B ) )  -  ( _i  x.  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 ) ) ) )
2614, 22, 14pnpcand 8303 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  ( _i  x.  B
) )  -  ( A  +  A )
)  =  ( ( _i  x.  B )  -  A ) )
2722, 14, 22pnpcan2d 8304 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( _i  x.  B )  +  ( _i  x.  B
) )  -  ( A  +  ( _i  x.  B ) ) )  =  ( ( _i  x.  B )  -  A ) )
2826, 27eqtr4d 2213 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  ( _i  x.  B
) )  -  ( A  +  A )
)  =  ( ( ( _i  x.  B
)  +  ( _i  x.  B ) )  -  ( A  +  ( _i  x.  B
) ) ) )
2928oveq1d 5889 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  -  ( A  +  A
) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  =  ( ( ( ( _i  x.  B )  +  ( _i  x.  B ) )  -  ( A  +  ( _i  x.  B ) ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) ) )
3014, 14addcld 7975 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  A
)  e.  CC )
317, 11, 30addsubd 8287 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  -  ( A  +  A ) )  =  ( ( ( A  +  ( _i  x.  B ) )  -  ( A  +  A ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) ) )
3222, 22addcld 7975 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( _i  x.  B )  +  ( _i  x.  B ) )  e.  CC )
3332, 7, 11subsubd 8294 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( _i  x.  B )  +  ( _i  x.  B
) )  -  (
( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) ) )  =  ( ( ( ( _i  x.  B )  +  ( _i  x.  B ) )  -  ( A  +  ( _i  x.  B ) ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) ) )
3429, 31, 333eqtr4d 2220 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  -  ( A  +  A ) )  =  ( ( ( _i  x.  B )  +  ( _i  x.  B ) )  -  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) ) ) )
35142timesd 9159 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 2  x.  A
)  =  ( A  +  A ) )
3635oveq2d 5890 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  -  ( 2  x.  A ) )  =  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  -  ( A  +  A
) ) )
37222timesd 9159 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 2  x.  (
_i  x.  B )
)  =  ( ( _i  x.  B )  +  ( _i  x.  B ) ) )
3837oveq1d 5889 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 2  x.  ( _i  x.  B
) )  -  (
( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) ) )  =  ( ( ( _i  x.  B
)  +  ( _i  x.  B ) )  -  ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  ( _i  x.  B ) ) ) ) ) )
3934, 36, 383eqtr4d 2220 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  -  ( 2  x.  A ) )  =  ( ( 2  x.  ( _i  x.  B ) )  -  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) ) ) )
4039oveq1d 5889 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  -  ( 2  x.  A
) )  /  2
)  =  ( ( ( 2  x.  (
_i  x.  B )
)  -  ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  (
_i  x.  B )
) ) ) )  /  2 ) )
41 2cn 8988 . . . . . . . . . . 11  |-  2  e.  CC
42 mulcl 7937 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  A  e.  CC )  ->  ( 2  x.  A
)  e.  CC )
4341, 14, 42sylancr 414 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 2  x.  A
)  e.  CC )
4441a1i 9 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  2  e.  CC )
45 2ap0 9010 . . . . . . . . . . 11  |-  2 #  0
4645a1i 9 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  2 #  0 )
4712, 43, 44, 46divsubdirapd 8785 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  -  ( 2  x.  A
) )  /  2
)  =  ( ( ( ( A  +  ( _i  x.  B
) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  -  ( ( 2  x.  A )  / 
2 ) ) )
48 mulcl 7937 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( 2  x.  ( _i  x.  B
) )  e.  CC )
4941, 22, 48sylancr 414 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 2  x.  (
_i  x.  B )
)  e.  CC )
5049, 23, 44, 46divsubdirapd 8785 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( 2  x.  ( _i  x.  B ) )  -  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) ) )  /  2
)  =  ( ( ( 2  x.  (
_i  x.  B )
)  /  2 )  -  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) ) )
5140, 47, 503eqtr3d 2218 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  (
( 2  x.  A
)  /  2 ) )  =  ( ( ( 2  x.  (
_i  x.  B )
)  /  2 )  -  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) ) )
5214, 44, 46divcanap3d 8750 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 2  x.  A )  /  2
)  =  A )
5352oveq2d 5890 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  (
( 2  x.  A
)  /  2 ) )  =  ( ( ( ( A  +  ( _i  x.  B
) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  -  A ) )
5422, 44, 46divcanap3d 8750 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 2  x.  ( _i  x.  B
) )  /  2
)  =  ( _i  x.  B ) )
5554oveq1d 5889 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( 2  x.  ( _i  x.  B ) )  / 
2 )  -  (
( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) )  /  2 ) )  =  ( ( _i  x.  B )  -  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) ) )
5651, 53, 553eqtr3d 2218 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  A
)  =  ( ( _i  x.  B )  -  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) ) )
5756oveq2d 5890 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( _i  x.  (
( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  -  A ) )  =  ( _i  x.  ( ( _i  x.  B )  -  (
( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) )  /  2 ) ) ) )
5820, 20, 21mulassd 7979 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( _i  x.  _i )  x.  B
)  =  ( _i  x.  ( _i  x.  B ) ) )
5920, 23, 44, 46divassapd 8781 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( _i  x.  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) ) )  /  2
)  =  ( _i  x.  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) ) )
6058, 59oveq12d 5892 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( _i  x.  _i )  x.  B )  -  (
( _i  x.  (
( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) ) )  /  2 ) )  =  ( ( _i  x.  ( _i  x.  B ) )  -  ( _i  x.  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 ) ) ) )
6125, 57, 603eqtr4d 2220 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( _i  x.  (
( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  -  A ) )  =  ( ( ( _i  x.  _i )  x.  B )  -  ( ( _i  x.  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) ) )  /  2
) ) )
62 ixi 8538 . . . . . . . 8  |-  ( _i  x.  _i )  = 
-u 1
63 neg1rr 9023 . . . . . . . 8  |-  -u 1  e.  RR
6462, 63eqeltri 2250 . . . . . . 7  |-  ( _i  x.  _i )  e.  RR
65 simpr 110 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  RR )
66 remulcl 7938 . . . . . . 7  |-  ( ( ( _i  x.  _i )  e.  RR  /\  B  e.  RR )  ->  (
( _i  x.  _i )  x.  B )  e.  RR )
6764, 65, 66sylancr 414 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( _i  x.  _i )  x.  B
)  e.  RR )
68 cjth 10850 . . . . . . . . 9  |-  ( ( A  +  ( _i  x.  B ) )  e.  CC  ->  (
( ( A  +  ( _i  x.  B
) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  e.  RR  /\  ( _i  x.  (
( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) ) )  e.  RR ) )
6968simprd 114 . . . . . . . 8  |-  ( ( A  +  ( _i  x.  B ) )  e.  CC  ->  (
_i  x.  ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  ( _i  x.  B ) ) ) ) )  e.  RR )
707, 69syl 14 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( _i  x.  (
( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) ) )  e.  RR )
7170rehalfcld 9163 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( _i  x.  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) ) )  /  2
)  e.  RR )
7267, 71resubcld 8336 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( _i  x.  _i )  x.  B )  -  (
( _i  x.  (
( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) ) )  /  2 ) )  e.  RR )
7361, 72eqeltrd 2254 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( _i  x.  (
( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  -  A ) )  e.  RR )
74 rimul 8540 . . . 4  |-  ( ( ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  A
)  e.  RR  /\  ( _i  x.  (
( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  -  A ) )  e.  RR )  -> 
( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  A
)  =  0 )
7519, 73, 74syl2anc 411 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  A
)  =  0 )
7613, 14, 75subeq0d 8274 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  =  A )
779, 76eqtrd 2210 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   class class class wbr 4003   ` cfv 5216  (class class class)co 5874   CCcc 7808   RRcr 7809   0cc0 7810   1c1 7811   _ici 7812    + caddc 7813    x. cmul 7815    - cmin 8126   -ucneg 8127   # cap 8536    / cdiv 8627   2c2 8968   *ccj 10843   Recre 10844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-po 4296  df-iso 4297  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-reap 8530  df-ap 8537  df-div 8628  df-2 8976  df-cj 10846  df-re 10847
This theorem is referenced by:  crim  10862  replim  10863  mulreap  10868  recj  10871  reneg  10872  readd  10873  remullem  10875  rei  10903  crrei  10940  crred  10980  rennim  11006  absreimsq  11071  4sqlem4  12384  2sqlem2  14382
  Copyright terms: Public domain W3C validator