| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > efcllemp | Unicode version | ||
| Description: Lemma for efcl 12170. The series that defines the exponential function converges. The ratio test cvgratgt0 12039 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.) |
| Ref | Expression |
|---|---|
| efcllemp.1 |
|
| efcllemp.a |
|
| efcllemp.k |
|
| efcllemp.ak |
|
| Ref | Expression |
|---|---|
| efcllemp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 9753 |
. 2
| |
| 2 | eqid 2229 |
. 2
| |
| 3 | halfre 9320 |
. . 3
| |
| 4 | 3 | a1i 9 |
. 2
|
| 5 | halflt1 9324 |
. . 3
| |
| 6 | 5 | a1i 9 |
. 2
|
| 7 | halfgt0 9322 |
. . 3
| |
| 8 | 7 | a1i 9 |
. 2
|
| 9 | efcllemp.k |
. . 3
| |
| 10 | 9 | nnnn0d 9418 |
. 2
|
| 11 | efcllemp.a |
. . 3
| |
| 12 | efcllemp.1 |
. . . . 5
| |
| 13 | 12 | eftvalcn 12163 |
. . . 4
|
| 14 | eftcl 12160 |
. . . 4
| |
| 15 | 13, 14 | eqeltrd 2306 |
. . 3
|
| 16 | 11, 15 | sylan 283 |
. 2
|
| 17 | 11 | adantr 276 |
. . . . . 6
|
| 18 | 17 | abscld 11687 |
. . . . 5
|
| 19 | eluznn0 9790 |
. . . . . . 7
| |
| 20 | 10, 19 | sylan 283 |
. . . . . 6
|
| 21 | nn0p1nn 9404 |
. . . . . 6
| |
| 22 | 20, 21 | syl 14 |
. . . . 5
|
| 23 | 18, 22 | nndivred 9156 |
. . . 4
|
| 24 | 3 | a1i 9 |
. . . 4
|
| 25 | 18, 20 | reexpcld 10907 |
. . . . 5
|
| 26 | 20 | faccld 10953 |
. . . . 5
|
| 27 | 25, 26 | nndivred 9156 |
. . . 4
|
| 28 | 17, 20 | expcld 10890 |
. . . . . . 7
|
| 29 | 28 | absge0d 11690 |
. . . . . 6
|
| 30 | 17, 20 | absexpd 11698 |
. . . . . 6
|
| 31 | 29, 30 | breqtrd 4108 |
. . . . 5
|
| 32 | 26 | nnred 9119 |
. . . . 5
|
| 33 | 26 | nngt0d 9150 |
. . . . 5
|
| 34 | divge0 9016 |
. . . . 5
| |
| 35 | 25, 31, 32, 33, 34 | syl22anc 1272 |
. . . 4
|
| 36 | 2re 9176 |
. . . . . . . . . 10
| |
| 37 | abscl 11557 |
. . . . . . . . . 10
| |
| 38 | remulcl 8123 |
. . . . . . . . . 10
| |
| 39 | 36, 37, 38 | sylancr 414 |
. . . . . . . . 9
|
| 40 | 17, 39 | syl 14 |
. . . . . . . 8
|
| 41 | peano2nn0 9405 |
. . . . . . . . . . 11
| |
| 42 | 10, 41 | syl 14 |
. . . . . . . . . 10
|
| 43 | 42 | nn0red 9419 |
. . . . . . . . 9
|
| 44 | 43 | adantr 276 |
. . . . . . . 8
|
| 45 | 22 | nnred 9119 |
. . . . . . . 8
|
| 46 | 10 | adantr 276 |
. . . . . . . . . 10
|
| 47 | 46 | nn0red 9419 |
. . . . . . . . 9
|
| 48 | efcllemp.ak |
. . . . . . . . . 10
| |
| 49 | 48 | adantr 276 |
. . . . . . . . 9
|
| 50 | 47 | ltp1d 9073 |
. . . . . . . . 9
|
| 51 | 40, 47, 44, 49, 50 | lttrd 8268 |
. . . . . . . 8
|
| 52 | eluzp1p1 9744 |
. . . . . . . . . 10
| |
| 53 | 52 | adantl 277 |
. . . . . . . . 9
|
| 54 | eluzle 9730 |
. . . . . . . . 9
| |
| 55 | 53, 54 | syl 14 |
. . . . . . . 8
|
| 56 | 40, 44, 45, 51, 55 | ltletrd 8566 |
. . . . . . 7
|
| 57 | 18 | recnd 8171 |
. . . . . . . 8
|
| 58 | 2cn 9177 |
. . . . . . . 8
| |
| 59 | mulcom 8124 |
. . . . . . . 8
| |
| 60 | 57, 58, 59 | sylancl 413 |
. . . . . . 7
|
| 61 | 22 | nncnd 9120 |
. . . . . . . 8
|
| 62 | 61 | mulid2d 8161 |
. . . . . . 7
|
| 63 | 56, 60, 62 | 3brtr4d 4114 |
. . . . . 6
|
| 64 | 2rp 9850 |
. . . . . . . 8
| |
| 65 | 64 | a1i 9 |
. . . . . . 7
|
| 66 | 1red 8157 |
. . . . . . 7
| |
| 67 | 22 | nnrpd 9886 |
. . . . . . 7
|
| 68 | 18, 65, 66, 67 | lt2mul2divd 9957 |
. . . . . 6
|
| 69 | 63, 68 | mpbid 147 |
. . . . 5
|
| 70 | ltle 8230 |
. . . . . 6
| |
| 71 | 23, 3, 70 | sylancl 413 |
. . . . 5
|
| 72 | 69, 71 | mpd 13 |
. . . 4
|
| 73 | 23, 24, 27, 35, 72 | lemul2ad 9083 |
. . 3
|
| 74 | peano2nn0 9405 |
. . . . . . 7
| |
| 75 | 20, 74 | syl 14 |
. . . . . 6
|
| 76 | 12 | eftvalcn 12163 |
. . . . . 6
|
| 77 | 11, 75, 76 | syl2an2r 597 |
. . . . 5
|
| 78 | 77 | fveq2d 5630 |
. . . 4
|
| 79 | 17, 75 | absexpd 11698 |
. . . . . . 7
|
| 80 | 57, 20 | expp1d 10891 |
. . . . . . 7
|
| 81 | 79, 80 | eqtrd 2262 |
. . . . . 6
|
| 82 | 75 | faccld 10953 |
. . . . . . . . 9
|
| 83 | 82 | nnred 9119 |
. . . . . . . 8
|
| 84 | 82 | nnnn0d 9418 |
. . . . . . . . 9
|
| 85 | 84 | nn0ge0d 9421 |
. . . . . . . 8
|
| 86 | 83, 85 | absidd 11673 |
. . . . . . 7
|
| 87 | facp1 10947 |
. . . . . . . 8
| |
| 88 | 20, 87 | syl 14 |
. . . . . . 7
|
| 89 | 86, 88 | eqtrd 2262 |
. . . . . 6
|
| 90 | 81, 89 | oveq12d 6018 |
. . . . 5
|
| 91 | 17, 75 | expcld 10890 |
. . . . . 6
|
| 92 | 82 | nncnd 9120 |
. . . . . 6
|
| 93 | 82 | nnap0d 9152 |
. . . . . 6
|
| 94 | 91, 92, 93 | absdivapd 11701 |
. . . . 5
|
| 95 | 25 | recnd 8171 |
. . . . . 6
|
| 96 | 26 | nncnd 9120 |
. . . . . 6
|
| 97 | 26 | nnap0d 9152 |
. . . . . 6
|
| 98 | 22 | nnap0d 9152 |
. . . . . 6
|
| 99 | 95, 96, 57, 61, 97, 98 | divmuldivapd 8975 |
. . . . 5
|
| 100 | 90, 94, 99 | 3eqtr4d 2272 |
. . . 4
|
| 101 | 78, 100 | eqtrd 2262 |
. . 3
|
| 102 | halfcn 9321 |
. . . . 5
| |
| 103 | 11, 20, 15 | syl2an2r 597 |
. . . . . . 7
|
| 104 | 103 | abscld 11687 |
. . . . . 6
|
| 105 | 104 | recnd 8171 |
. . . . 5
|
| 106 | mulcom 8124 |
. . . . 5
| |
| 107 | 102, 105, 106 | sylancr 414 |
. . . 4
|
| 108 | 11, 20, 13 | syl2an2r 597 |
. . . . . . 7
|
| 109 | 108 | fveq2d 5630 |
. . . . . 6
|
| 110 | eftabs 12162 |
. . . . . . 7
| |
| 111 | 11, 20, 110 | syl2an2r 597 |
. . . . . 6
|
| 112 | 109, 111 | eqtrd 2262 |
. . . . 5
|
| 113 | 112 | oveq1d 6015 |
. . . 4
|
| 114 | 107, 113 | eqtrd 2262 |
. . 3
|
| 115 | 73, 101, 114 | 3brtr4d 4114 |
. 2
|
| 116 | 1, 2, 4, 6, 8, 10, 16, 115 | cvgratgt0 12039 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-frec 6535 df-1o 6560 df-oadd 6564 df-er 6678 df-en 6886 df-dom 6887 df-fin 6888 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-ico 10086 df-fz 10201 df-fzo 10335 df-seqfrec 10665 df-exp 10756 df-fac 10943 df-ihash 10993 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-clim 11785 df-sumdc 11860 |
| This theorem is referenced by: efcllem 12165 |
| Copyright terms: Public domain | W3C validator |