ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efcllemp Unicode version

Theorem efcllemp 11669
Description: Lemma for efcl 11675. The series that defines the exponential function converges. The ratio test cvgratgt0 11544 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.)
Hypotheses
Ref Expression
efcllemp.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
efcllemp.a  |-  ( ph  ->  A  e.  CC )
efcllemp.k  |-  ( ph  ->  K  e.  NN )
efcllemp.ak  |-  ( ph  ->  ( 2  x.  ( abs `  A ) )  <  K )
Assertion
Ref Expression
efcllemp  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
dom 
~~>  )
Distinct variable group:    A, n
Allowed substitution hints:    ph( n)    F( n)    K( n)

Proof of Theorem efcllemp
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9565 . 2  |-  NN0  =  ( ZZ>= `  0 )
2 eqid 2177 . 2  |-  ( ZZ>= `  K )  =  (
ZZ>= `  K )
3 halfre 9135 . . 3  |-  ( 1  /  2 )  e.  RR
43a1i 9 . 2  |-  ( ph  ->  ( 1  /  2
)  e.  RR )
5 halflt1 9139 . . 3  |-  ( 1  /  2 )  <  1
65a1i 9 . 2  |-  ( ph  ->  ( 1  /  2
)  <  1 )
7 halfgt0 9137 . . 3  |-  0  <  ( 1  /  2
)
87a1i 9 . 2  |-  ( ph  ->  0  <  ( 1  /  2 ) )
9 efcllemp.k . . 3  |-  ( ph  ->  K  e.  NN )
109nnnn0d 9232 . 2  |-  ( ph  ->  K  e.  NN0 )
11 efcllemp.a . . 3  |-  ( ph  ->  A  e.  CC )
12 efcllemp.1 . . . . 5  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
1312eftvalcn 11668 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  =  ( ( A ^ k )  /  ( ! `  k ) ) )
14 eftcl 11665 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
1513, 14eqeltrd 2254 . . 3  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  e.  CC )
1611, 15sylan 283 . 2  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  CC )
1711adantr 276 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  A  e.  CC )
1817abscld 11193 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  A )  e.  RR )
19 eluznn0 9602 . . . . . . 7  |-  ( ( K  e.  NN0  /\  k  e.  ( ZZ>= `  K ) )  -> 
k  e.  NN0 )
2010, 19sylan 283 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  k  e.  NN0 )
21 nn0p1nn 9218 . . . . . 6  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
2220, 21syl 14 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  NN )
2318, 22nndivred 8972 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A )  / 
( k  +  1 ) )  e.  RR )
243a1i 9 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 1  /  2 )  e.  RR )
2518, 20reexpcld 10674 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A ) ^
k )  e.  RR )
2620faccld 10719 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  k )  e.  NN )
2725, 26nndivred 8972 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
( abs `  A
) ^ k )  /  ( ! `  k ) )  e.  RR )
2817, 20expcld 10657 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( A ^ k )  e.  CC )
2928absge0d 11196 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  0  <_  ( abs `  ( A ^ k ) ) )
3017, 20absexpd 11204 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( A ^ k
) )  =  ( ( abs `  A
) ^ k ) )
3129, 30breqtrd 4031 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  0  <_  ( ( abs `  A
) ^ k ) )
3226nnred 8935 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  k )  e.  RR )
3326nngt0d 8966 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  0  <  ( ! `  k ) )
34 divge0 8833 . . . . 5  |-  ( ( ( ( ( abs `  A ) ^ k
)  e.  RR  /\  0  <_  ( ( abs `  A ) ^ k
) )  /\  (
( ! `  k
)  e.  RR  /\  0  <  ( ! `  k ) ) )  ->  0  <_  (
( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
3525, 31, 32, 33, 34syl22anc 1239 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  0  <_  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
36 2re 8992 . . . . . . . . . 10  |-  2  e.  RR
37 abscl 11063 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
38 remulcl 7942 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  ( abs `  A )  e.  RR )  -> 
( 2  x.  ( abs `  A ) )  e.  RR )
3936, 37, 38sylancr 414 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
2  x.  ( abs `  A ) )  e.  RR )
4017, 39syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 2  x.  ( abs `  A
) )  e.  RR )
41 peano2nn0 9219 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  ( K  +  1 )  e. 
NN0 )
4210, 41syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( K  +  1 )  e.  NN0 )
4342nn0red 9233 . . . . . . . . 9  |-  ( ph  ->  ( K  +  1 )  e.  RR )
4443adantr 276 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( K  +  1 )  e.  RR )
4522nnred 8935 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  RR )
4610adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  K  e.  NN0 )
4746nn0red 9233 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  K  e.  RR )
48 efcllemp.ak . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  ( abs `  A ) )  <  K )
4948adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 2  x.  ( abs `  A
) )  <  K
)
5047ltp1d 8890 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  K  <  ( K  +  1 ) )
5140, 47, 44, 49, 50lttrd 8086 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 2  x.  ( abs `  A
) )  <  ( K  +  1 ) )
52 eluzp1p1 9556 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  K
)  ->  ( k  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
5352adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
54 eluzle 9543 . . . . . . . . 9  |-  ( ( k  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) )  ->  ( K  +  1 )  <_ 
( k  +  1 ) )
5553, 54syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( K  +  1 )  <_ 
( k  +  1 ) )
5640, 44, 45, 51, 55ltletrd 8383 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 2  x.  ( abs `  A
) )  <  (
k  +  1 ) )
5718recnd 7989 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  A )  e.  CC )
58 2cn 8993 . . . . . . . 8  |-  2  e.  CC
59 mulcom 7943 . . . . . . . 8  |-  ( ( ( abs `  A
)  e.  CC  /\  2  e.  CC )  ->  ( ( abs `  A
)  x.  2 )  =  ( 2  x.  ( abs `  A
) ) )
6057, 58, 59sylancl 413 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A )  x.  2 )  =  ( 2  x.  ( abs `  A ) ) )
6122nncnd 8936 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  CC )
6261mulid2d 7979 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 1  x.  ( k  +  1 ) )  =  ( k  +  1 ) )
6356, 60, 623brtr4d 4037 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A )  x.  2 )  <  (
1  x.  ( k  +  1 ) ) )
64 2rp 9661 . . . . . . . 8  |-  2  e.  RR+
6564a1i 9 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  2  e.  RR+ )
66 1red 7975 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  1  e.  RR )
6722nnrpd 9697 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  RR+ )
6818, 65, 66, 67lt2mul2divd 9768 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
( abs `  A
)  x.  2 )  <  ( 1  x.  ( k  +  1 ) )  <->  ( ( abs `  A )  / 
( k  +  1 ) )  <  (
1  /  2 ) ) )
6963, 68mpbid 147 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A )  / 
( k  +  1 ) )  <  (
1  /  2 ) )
70 ltle 8048 . . . . . 6  |-  ( ( ( ( abs `  A
)  /  ( k  +  1 ) )  e.  RR  /\  (
1  /  2 )  e.  RR )  -> 
( ( ( abs `  A )  /  (
k  +  1 ) )  <  ( 1  /  2 )  -> 
( ( abs `  A
)  /  ( k  +  1 ) )  <_  ( 1  / 
2 ) ) )
7123, 3, 70sylancl 413 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
( abs `  A
)  /  ( k  +  1 ) )  <  ( 1  / 
2 )  ->  (
( abs `  A
)  /  ( k  +  1 ) )  <_  ( 1  / 
2 ) ) )
7269, 71mpd 13 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A )  / 
( k  +  1 ) )  <_  (
1  /  2 ) )
7323, 24, 27, 35, 72lemul2ad 8900 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
( ( abs `  A
) ^ k )  /  ( ! `  k ) )  x.  ( ( abs `  A
)  /  ( k  +  1 ) ) )  <_  ( (
( ( abs `  A
) ^ k )  /  ( ! `  k ) )  x.  ( 1  /  2
) ) )
74 peano2nn0 9219 . . . . . . 7  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
7520, 74syl 14 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e. 
NN0 )
7612eftvalcn 11668 . . . . . 6  |-  ( ( A  e.  CC  /\  ( k  +  1 )  e.  NN0 )  ->  ( F `  (
k  +  1 ) )  =  ( ( A ^ ( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) )
7711, 75, 76syl2an2r 595 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( F `  ( k  +  1 ) )  =  ( ( A ^ (
k  +  1 ) )  /  ( ! `
 ( k  +  1 ) ) ) )
7877fveq2d 5521 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  (
k  +  1 ) ) )  =  ( abs `  ( ( A ^ ( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) ) )
7917, 75absexpd 11204 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( abs `  A
) ^ ( k  +  1 ) ) )
8057, 20expp1d 10658 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A ) ^
( k  +  1 ) )  =  ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) ) )
8179, 80eqtrd 2210 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) ) )
8275faccld 10719 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) )  e.  NN )
8382nnred 8935 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) )  e.  RR )
8482nnnn0d 9232 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) )  e.  NN0 )
8584nn0ge0d 9235 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  0  <_  ( ! `  ( k  +  1 ) ) )
8683, 85absidd 11179 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( ! `  (
k  +  1 ) ) )  =  ( ! `  ( k  +  1 ) ) )
87 facp1 10713 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
8820, 87syl 14 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) )  =  ( ( ! `  k
)  x.  ( k  +  1 ) ) )
8986, 88eqtrd 2210 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( ! `  (
k  +  1 ) ) )  =  ( ( ! `  k
)  x.  ( k  +  1 ) ) )
9081, 89oveq12d 5896 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  ( A ^
( k  +  1 ) ) )  / 
( abs `  ( ! `  ( k  +  1 ) ) ) )  =  ( ( ( ( abs `  A ) ^ k
)  x.  ( abs `  A ) )  / 
( ( ! `  k )  x.  (
k  +  1 ) ) ) )
9117, 75expcld 10657 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( A ^ ( k  +  1 ) )  e.  CC )
9282nncnd 8936 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) )  e.  CC )
9382nnap0d 8968 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) ) #  0 )
9491, 92, 93absdivapd 11207 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( ( A ^
( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) )  =  ( ( abs `  ( A ^ ( k  +  1 ) ) )  /  ( abs `  ( ! `  ( k  +  1 ) ) ) ) )
9525recnd 7989 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A ) ^
k )  e.  CC )
9626nncnd 8936 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  k )  e.  CC )
9726nnap0d 8968 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  k ) #  0 )
9822nnap0d 8968 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 ) #  0 )
9995, 96, 57, 61, 97, 98divmuldivapd 8792 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
( ( abs `  A
) ^ k )  /  ( ! `  k ) )  x.  ( ( abs `  A
)  /  ( k  +  1 ) ) )  =  ( ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) )  /  (
( ! `  k
)  x.  ( k  +  1 ) ) ) )
10090, 94, 993eqtr4d 2220 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( ( A ^
( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( ( abs `  A )  /  (
k  +  1 ) ) ) )
10178, 100eqtrd 2210 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  (
k  +  1 ) ) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( ( abs `  A )  /  (
k  +  1 ) ) ) )
102 halfcn 9136 . . . . 5  |-  ( 1  /  2 )  e.  CC
10311, 20, 15syl2an2r 595 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( F `  k )  e.  CC )
104103abscld 11193 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  k
) )  e.  RR )
105104recnd 7989 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  k
) )  e.  CC )
106 mulcom 7943 . . . . 5  |-  ( ( ( 1  /  2
)  e.  CC  /\  ( abs `  ( F `
 k ) )  e.  CC )  -> 
( ( 1  / 
2 )  x.  ( abs `  ( F `  k ) ) )  =  ( ( abs `  ( F `  k
) )  x.  (
1  /  2 ) ) )
107102, 105, 106sylancr 414 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
1  /  2 )  x.  ( abs `  ( F `  k )
) )  =  ( ( abs `  ( F `  k )
)  x.  ( 1  /  2 ) ) )
10811, 20, 13syl2an2r 595 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( F `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
109108fveq2d 5521 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  k
) )  =  ( abs `  ( ( A ^ k )  /  ( ! `  k ) ) ) )
110 eftabs 11667 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  (
( A ^ k
)  /  ( ! `
 k ) ) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
11111, 20, 110syl2an2r 595 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( ( A ^
k )  /  ( ! `  k )
) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
112109, 111eqtrd 2210 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  k
) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
113112oveq1d 5893 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  ( F `  k ) )  x.  ( 1  /  2
) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( 1  / 
2 ) ) )
114107, 113eqtrd 2210 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
1  /  2 )  x.  ( abs `  ( F `  k )
) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( 1  / 
2 ) ) )
11573, 101, 1143brtr4d 4037 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( 1  /  2
)  x.  ( abs `  ( F `  k
) ) ) )
1161, 2, 4, 6, 8, 10, 16, 115cvgratgt0 11544 1  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
dom 
~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   class class class wbr 4005    |-> cmpt 4066   dom cdm 4628   ` cfv 5218  (class class class)co 5878   CCcc 7812   RRcr 7813   0cc0 7814   1c1 7815    + caddc 7817    x. cmul 7819    < clt 7995    <_ cle 7996    / cdiv 8632   NNcn 8922   2c2 8973   NN0cn0 9179   ZZ>=cuz 9531   RR+crp 9656    seqcseq 10448   ^cexp 10522   !cfa 10708   abscabs 11009    ~~> cli 11289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-frec 6395  df-1o 6420  df-oadd 6424  df-er 6538  df-en 6744  df-dom 6745  df-fin 6746  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-ico 9897  df-fz 10012  df-fzo 10146  df-seqfrec 10449  df-exp 10523  df-fac 10709  df-ihash 10759  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-clim 11290  df-sumdc 11365
This theorem is referenced by:  efcllem  11670
  Copyright terms: Public domain W3C validator