ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efcllemp Unicode version

Theorem efcllemp 11599
Description: Lemma for efcl 11605. The series that defines the exponential function converges. The ratio test cvgratgt0 11474 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.)
Hypotheses
Ref Expression
efcllemp.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
efcllemp.a  |-  ( ph  ->  A  e.  CC )
efcllemp.k  |-  ( ph  ->  K  e.  NN )
efcllemp.ak  |-  ( ph  ->  ( 2  x.  ( abs `  A ) )  <  K )
Assertion
Ref Expression
efcllemp  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
dom 
~~>  )
Distinct variable group:    A, n
Allowed substitution hints:    ph( n)    F( n)    K( n)

Proof of Theorem efcllemp
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9500 . 2  |-  NN0  =  ( ZZ>= `  0 )
2 eqid 2165 . 2  |-  ( ZZ>= `  K )  =  (
ZZ>= `  K )
3 halfre 9070 . . 3  |-  ( 1  /  2 )  e.  RR
43a1i 9 . 2  |-  ( ph  ->  ( 1  /  2
)  e.  RR )
5 halflt1 9074 . . 3  |-  ( 1  /  2 )  <  1
65a1i 9 . 2  |-  ( ph  ->  ( 1  /  2
)  <  1 )
7 halfgt0 9072 . . 3  |-  0  <  ( 1  /  2
)
87a1i 9 . 2  |-  ( ph  ->  0  <  ( 1  /  2 ) )
9 efcllemp.k . . 3  |-  ( ph  ->  K  e.  NN )
109nnnn0d 9167 . 2  |-  ( ph  ->  K  e.  NN0 )
11 efcllemp.a . . 3  |-  ( ph  ->  A  e.  CC )
12 efcllemp.1 . . . . 5  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
1312eftvalcn 11598 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  =  ( ( A ^ k )  /  ( ! `  k ) ) )
14 eftcl 11595 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
1513, 14eqeltrd 2243 . . 3  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  e.  CC )
1611, 15sylan 281 . 2  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  CC )
1711adantr 274 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  A  e.  CC )
1817abscld 11123 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  A )  e.  RR )
19 eluznn0 9537 . . . . . . 7  |-  ( ( K  e.  NN0  /\  k  e.  ( ZZ>= `  K ) )  -> 
k  e.  NN0 )
2010, 19sylan 281 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  k  e.  NN0 )
21 nn0p1nn 9153 . . . . . 6  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
2220, 21syl 14 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  NN )
2318, 22nndivred 8907 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A )  / 
( k  +  1 ) )  e.  RR )
243a1i 9 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 1  /  2 )  e.  RR )
2518, 20reexpcld 10605 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A ) ^
k )  e.  RR )
2620faccld 10649 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  k )  e.  NN )
2725, 26nndivred 8907 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
( abs `  A
) ^ k )  /  ( ! `  k ) )  e.  RR )
2817, 20expcld 10588 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( A ^ k )  e.  CC )
2928absge0d 11126 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  0  <_  ( abs `  ( A ^ k ) ) )
3017, 20absexpd 11134 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( A ^ k
) )  =  ( ( abs `  A
) ^ k ) )
3129, 30breqtrd 4008 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  0  <_  ( ( abs `  A
) ^ k ) )
3226nnred 8870 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  k )  e.  RR )
3326nngt0d 8901 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  0  <  ( ! `  k ) )
34 divge0 8768 . . . . 5  |-  ( ( ( ( ( abs `  A ) ^ k
)  e.  RR  /\  0  <_  ( ( abs `  A ) ^ k
) )  /\  (
( ! `  k
)  e.  RR  /\  0  <  ( ! `  k ) ) )  ->  0  <_  (
( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
3525, 31, 32, 33, 34syl22anc 1229 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  0  <_  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
36 2re 8927 . . . . . . . . . 10  |-  2  e.  RR
37 abscl 10993 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
38 remulcl 7881 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  ( abs `  A )  e.  RR )  -> 
( 2  x.  ( abs `  A ) )  e.  RR )
3936, 37, 38sylancr 411 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
2  x.  ( abs `  A ) )  e.  RR )
4017, 39syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 2  x.  ( abs `  A
) )  e.  RR )
41 peano2nn0 9154 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  ( K  +  1 )  e. 
NN0 )
4210, 41syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( K  +  1 )  e.  NN0 )
4342nn0red 9168 . . . . . . . . 9  |-  ( ph  ->  ( K  +  1 )  e.  RR )
4443adantr 274 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( K  +  1 )  e.  RR )
4522nnred 8870 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  RR )
4610adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  K  e.  NN0 )
4746nn0red 9168 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  K  e.  RR )
48 efcllemp.ak . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  ( abs `  A ) )  <  K )
4948adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 2  x.  ( abs `  A
) )  <  K
)
5047ltp1d 8825 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  K  <  ( K  +  1 ) )
5140, 47, 44, 49, 50lttrd 8024 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 2  x.  ( abs `  A
) )  <  ( K  +  1 ) )
52 eluzp1p1 9491 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  K
)  ->  ( k  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
5352adantl 275 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
54 eluzle 9478 . . . . . . . . 9  |-  ( ( k  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) )  ->  ( K  +  1 )  <_ 
( k  +  1 ) )
5553, 54syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( K  +  1 )  <_ 
( k  +  1 ) )
5640, 44, 45, 51, 55ltletrd 8321 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 2  x.  ( abs `  A
) )  <  (
k  +  1 ) )
5718recnd 7927 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  A )  e.  CC )
58 2cn 8928 . . . . . . . 8  |-  2  e.  CC
59 mulcom 7882 . . . . . . . 8  |-  ( ( ( abs `  A
)  e.  CC  /\  2  e.  CC )  ->  ( ( abs `  A
)  x.  2 )  =  ( 2  x.  ( abs `  A
) ) )
6057, 58, 59sylancl 410 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A )  x.  2 )  =  ( 2  x.  ( abs `  A ) ) )
6122nncnd 8871 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  CC )
6261mulid2d 7917 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 1  x.  ( k  +  1 ) )  =  ( k  +  1 ) )
6356, 60, 623brtr4d 4014 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A )  x.  2 )  <  (
1  x.  ( k  +  1 ) ) )
64 2rp 9594 . . . . . . . 8  |-  2  e.  RR+
6564a1i 9 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  2  e.  RR+ )
66 1red 7914 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  1  e.  RR )
6722nnrpd 9630 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  RR+ )
6818, 65, 66, 67lt2mul2divd 9701 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
( abs `  A
)  x.  2 )  <  ( 1  x.  ( k  +  1 ) )  <->  ( ( abs `  A )  / 
( k  +  1 ) )  <  (
1  /  2 ) ) )
6963, 68mpbid 146 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A )  / 
( k  +  1 ) )  <  (
1  /  2 ) )
70 ltle 7986 . . . . . 6  |-  ( ( ( ( abs `  A
)  /  ( k  +  1 ) )  e.  RR  /\  (
1  /  2 )  e.  RR )  -> 
( ( ( abs `  A )  /  (
k  +  1 ) )  <  ( 1  /  2 )  -> 
( ( abs `  A
)  /  ( k  +  1 ) )  <_  ( 1  / 
2 ) ) )
7123, 3, 70sylancl 410 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
( abs `  A
)  /  ( k  +  1 ) )  <  ( 1  / 
2 )  ->  (
( abs `  A
)  /  ( k  +  1 ) )  <_  ( 1  / 
2 ) ) )
7269, 71mpd 13 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A )  / 
( k  +  1 ) )  <_  (
1  /  2 ) )
7323, 24, 27, 35, 72lemul2ad 8835 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
( ( abs `  A
) ^ k )  /  ( ! `  k ) )  x.  ( ( abs `  A
)  /  ( k  +  1 ) ) )  <_  ( (
( ( abs `  A
) ^ k )  /  ( ! `  k ) )  x.  ( 1  /  2
) ) )
74 peano2nn0 9154 . . . . . . 7  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
7520, 74syl 14 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e. 
NN0 )
7612eftvalcn 11598 . . . . . 6  |-  ( ( A  e.  CC  /\  ( k  +  1 )  e.  NN0 )  ->  ( F `  (
k  +  1 ) )  =  ( ( A ^ ( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) )
7711, 75, 76syl2an2r 585 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( F `  ( k  +  1 ) )  =  ( ( A ^ (
k  +  1 ) )  /  ( ! `
 ( k  +  1 ) ) ) )
7877fveq2d 5490 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  (
k  +  1 ) ) )  =  ( abs `  ( ( A ^ ( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) ) )
7917, 75absexpd 11134 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( abs `  A
) ^ ( k  +  1 ) ) )
8057, 20expp1d 10589 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A ) ^
( k  +  1 ) )  =  ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) ) )
8179, 80eqtrd 2198 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) ) )
8275faccld 10649 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) )  e.  NN )
8382nnred 8870 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) )  e.  RR )
8482nnnn0d 9167 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) )  e.  NN0 )
8584nn0ge0d 9170 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  0  <_  ( ! `  ( k  +  1 ) ) )
8683, 85absidd 11109 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( ! `  (
k  +  1 ) ) )  =  ( ! `  ( k  +  1 ) ) )
87 facp1 10643 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
8820, 87syl 14 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) )  =  ( ( ! `  k
)  x.  ( k  +  1 ) ) )
8986, 88eqtrd 2198 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( ! `  (
k  +  1 ) ) )  =  ( ( ! `  k
)  x.  ( k  +  1 ) ) )
9081, 89oveq12d 5860 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  ( A ^
( k  +  1 ) ) )  / 
( abs `  ( ! `  ( k  +  1 ) ) ) )  =  ( ( ( ( abs `  A ) ^ k
)  x.  ( abs `  A ) )  / 
( ( ! `  k )  x.  (
k  +  1 ) ) ) )
9117, 75expcld 10588 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( A ^ ( k  +  1 ) )  e.  CC )
9282nncnd 8871 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) )  e.  CC )
9382nnap0d 8903 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) ) #  0 )
9491, 92, 93absdivapd 11137 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( ( A ^
( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) )  =  ( ( abs `  ( A ^ ( k  +  1 ) ) )  /  ( abs `  ( ! `  ( k  +  1 ) ) ) ) )
9525recnd 7927 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A ) ^
k )  e.  CC )
9626nncnd 8871 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  k )  e.  CC )
9726nnap0d 8903 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  k ) #  0 )
9822nnap0d 8903 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 ) #  0 )
9995, 96, 57, 61, 97, 98divmuldivapd 8728 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
( ( abs `  A
) ^ k )  /  ( ! `  k ) )  x.  ( ( abs `  A
)  /  ( k  +  1 ) ) )  =  ( ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) )  /  (
( ! `  k
)  x.  ( k  +  1 ) ) ) )
10090, 94, 993eqtr4d 2208 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( ( A ^
( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( ( abs `  A )  /  (
k  +  1 ) ) ) )
10178, 100eqtrd 2198 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  (
k  +  1 ) ) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( ( abs `  A )  /  (
k  +  1 ) ) ) )
102 halfcn 9071 . . . . 5  |-  ( 1  /  2 )  e.  CC
10311, 20, 15syl2an2r 585 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( F `  k )  e.  CC )
104103abscld 11123 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  k
) )  e.  RR )
105104recnd 7927 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  k
) )  e.  CC )
106 mulcom 7882 . . . . 5  |-  ( ( ( 1  /  2
)  e.  CC  /\  ( abs `  ( F `
 k ) )  e.  CC )  -> 
( ( 1  / 
2 )  x.  ( abs `  ( F `  k ) ) )  =  ( ( abs `  ( F `  k
) )  x.  (
1  /  2 ) ) )
107102, 105, 106sylancr 411 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
1  /  2 )  x.  ( abs `  ( F `  k )
) )  =  ( ( abs `  ( F `  k )
)  x.  ( 1  /  2 ) ) )
10811, 20, 13syl2an2r 585 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( F `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
109108fveq2d 5490 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  k
) )  =  ( abs `  ( ( A ^ k )  /  ( ! `  k ) ) ) )
110 eftabs 11597 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  (
( A ^ k
)  /  ( ! `
 k ) ) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
11111, 20, 110syl2an2r 585 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( ( A ^
k )  /  ( ! `  k )
) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
112109, 111eqtrd 2198 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  k
) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
113112oveq1d 5857 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  ( F `  k ) )  x.  ( 1  /  2
) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( 1  / 
2 ) ) )
114107, 113eqtrd 2198 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
1  /  2 )  x.  ( abs `  ( F `  k )
) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( 1  / 
2 ) ) )
11573, 101, 1143brtr4d 4014 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( 1  /  2
)  x.  ( abs `  ( F `  k
) ) ) )
1161, 2, 4, 6, 8, 10, 16, 115cvgratgt0 11474 1  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
dom 
~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   class class class wbr 3982    |-> cmpt 4043   dom cdm 4604   ` cfv 5188  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758    < clt 7933    <_ cle 7934    / cdiv 8568   NNcn 8857   2c2 8908   NN0cn0 9114   ZZ>=cuz 9466   RR+crp 9589    seqcseq 10380   ^cexp 10454   !cfa 10638   abscabs 10939    ~~> cli 11219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-ico 9830  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by:  efcllem  11600
  Copyright terms: Public domain W3C validator