Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > efcllemp | Unicode version |
Description: Lemma for efcl 11627. The series that defines the exponential function converges. The ratio test cvgratgt0 11496 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.) |
Ref | Expression |
---|---|
efcllemp.1 | |
efcllemp.a | |
efcllemp.k | |
efcllemp.ak |
Ref | Expression |
---|---|
efcllemp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 9521 | . 2 | |
2 | eqid 2170 | . 2 | |
3 | halfre 9091 | . . 3 | |
4 | 3 | a1i 9 | . 2 |
5 | halflt1 9095 | . . 3 | |
6 | 5 | a1i 9 | . 2 |
7 | halfgt0 9093 | . . 3 | |
8 | 7 | a1i 9 | . 2 |
9 | efcllemp.k | . . 3 | |
10 | 9 | nnnn0d 9188 | . 2 |
11 | efcllemp.a | . . 3 | |
12 | efcllemp.1 | . . . . 5 | |
13 | 12 | eftvalcn 11620 | . . . 4 |
14 | eftcl 11617 | . . . 4 | |
15 | 13, 14 | eqeltrd 2247 | . . 3 |
16 | 11, 15 | sylan 281 | . 2 |
17 | 11 | adantr 274 | . . . . . 6 |
18 | 17 | abscld 11145 | . . . . 5 |
19 | eluznn0 9558 | . . . . . . 7 | |
20 | 10, 19 | sylan 281 | . . . . . 6 |
21 | nn0p1nn 9174 | . . . . . 6 | |
22 | 20, 21 | syl 14 | . . . . 5 |
23 | 18, 22 | nndivred 8928 | . . . 4 |
24 | 3 | a1i 9 | . . . 4 |
25 | 18, 20 | reexpcld 10626 | . . . . 5 |
26 | 20 | faccld 10670 | . . . . 5 |
27 | 25, 26 | nndivred 8928 | . . . 4 |
28 | 17, 20 | expcld 10609 | . . . . . . 7 |
29 | 28 | absge0d 11148 | . . . . . 6 |
30 | 17, 20 | absexpd 11156 | . . . . . 6 |
31 | 29, 30 | breqtrd 4015 | . . . . 5 |
32 | 26 | nnred 8891 | . . . . 5 |
33 | 26 | nngt0d 8922 | . . . . 5 |
34 | divge0 8789 | . . . . 5 | |
35 | 25, 31, 32, 33, 34 | syl22anc 1234 | . . . 4 |
36 | 2re 8948 | . . . . . . . . . 10 | |
37 | abscl 11015 | . . . . . . . . . 10 | |
38 | remulcl 7902 | . . . . . . . . . 10 | |
39 | 36, 37, 38 | sylancr 412 | . . . . . . . . 9 |
40 | 17, 39 | syl 14 | . . . . . . . 8 |
41 | peano2nn0 9175 | . . . . . . . . . . 11 | |
42 | 10, 41 | syl 14 | . . . . . . . . . 10 |
43 | 42 | nn0red 9189 | . . . . . . . . 9 |
44 | 43 | adantr 274 | . . . . . . . 8 |
45 | 22 | nnred 8891 | . . . . . . . 8 |
46 | 10 | adantr 274 | . . . . . . . . . 10 |
47 | 46 | nn0red 9189 | . . . . . . . . 9 |
48 | efcllemp.ak | . . . . . . . . . 10 | |
49 | 48 | adantr 274 | . . . . . . . . 9 |
50 | 47 | ltp1d 8846 | . . . . . . . . 9 |
51 | 40, 47, 44, 49, 50 | lttrd 8045 | . . . . . . . 8 |
52 | eluzp1p1 9512 | . . . . . . . . . 10 | |
53 | 52 | adantl 275 | . . . . . . . . 9 |
54 | eluzle 9499 | . . . . . . . . 9 | |
55 | 53, 54 | syl 14 | . . . . . . . 8 |
56 | 40, 44, 45, 51, 55 | ltletrd 8342 | . . . . . . 7 |
57 | 18 | recnd 7948 | . . . . . . . 8 |
58 | 2cn 8949 | . . . . . . . 8 | |
59 | mulcom 7903 | . . . . . . . 8 | |
60 | 57, 58, 59 | sylancl 411 | . . . . . . 7 |
61 | 22 | nncnd 8892 | . . . . . . . 8 |
62 | 61 | mulid2d 7938 | . . . . . . 7 |
63 | 56, 60, 62 | 3brtr4d 4021 | . . . . . 6 |
64 | 2rp 9615 | . . . . . . . 8 | |
65 | 64 | a1i 9 | . . . . . . 7 |
66 | 1red 7935 | . . . . . . 7 | |
67 | 22 | nnrpd 9651 | . . . . . . 7 |
68 | 18, 65, 66, 67 | lt2mul2divd 9722 | . . . . . 6 |
69 | 63, 68 | mpbid 146 | . . . . 5 |
70 | ltle 8007 | . . . . . 6 | |
71 | 23, 3, 70 | sylancl 411 | . . . . 5 |
72 | 69, 71 | mpd 13 | . . . 4 |
73 | 23, 24, 27, 35, 72 | lemul2ad 8856 | . . 3 |
74 | peano2nn0 9175 | . . . . . . 7 | |
75 | 20, 74 | syl 14 | . . . . . 6 |
76 | 12 | eftvalcn 11620 | . . . . . 6 |
77 | 11, 75, 76 | syl2an2r 590 | . . . . 5 |
78 | 77 | fveq2d 5500 | . . . 4 |
79 | 17, 75 | absexpd 11156 | . . . . . . 7 |
80 | 57, 20 | expp1d 10610 | . . . . . . 7 |
81 | 79, 80 | eqtrd 2203 | . . . . . 6 |
82 | 75 | faccld 10670 | . . . . . . . . 9 |
83 | 82 | nnred 8891 | . . . . . . . 8 |
84 | 82 | nnnn0d 9188 | . . . . . . . . 9 |
85 | 84 | nn0ge0d 9191 | . . . . . . . 8 |
86 | 83, 85 | absidd 11131 | . . . . . . 7 |
87 | facp1 10664 | . . . . . . . 8 | |
88 | 20, 87 | syl 14 | . . . . . . 7 |
89 | 86, 88 | eqtrd 2203 | . . . . . 6 |
90 | 81, 89 | oveq12d 5871 | . . . . 5 |
91 | 17, 75 | expcld 10609 | . . . . . 6 |
92 | 82 | nncnd 8892 | . . . . . 6 |
93 | 82 | nnap0d 8924 | . . . . . 6 # |
94 | 91, 92, 93 | absdivapd 11159 | . . . . 5 |
95 | 25 | recnd 7948 | . . . . . 6 |
96 | 26 | nncnd 8892 | . . . . . 6 |
97 | 26 | nnap0d 8924 | . . . . . 6 # |
98 | 22 | nnap0d 8924 | . . . . . 6 # |
99 | 95, 96, 57, 61, 97, 98 | divmuldivapd 8749 | . . . . 5 |
100 | 90, 94, 99 | 3eqtr4d 2213 | . . . 4 |
101 | 78, 100 | eqtrd 2203 | . . 3 |
102 | halfcn 9092 | . . . . 5 | |
103 | 11, 20, 15 | syl2an2r 590 | . . . . . . 7 |
104 | 103 | abscld 11145 | . . . . . 6 |
105 | 104 | recnd 7948 | . . . . 5 |
106 | mulcom 7903 | . . . . 5 | |
107 | 102, 105, 106 | sylancr 412 | . . . 4 |
108 | 11, 20, 13 | syl2an2r 590 | . . . . . . 7 |
109 | 108 | fveq2d 5500 | . . . . . 6 |
110 | eftabs 11619 | . . . . . . 7 | |
111 | 11, 20, 110 | syl2an2r 590 | . . . . . 6 |
112 | 109, 111 | eqtrd 2203 | . . . . 5 |
113 | 112 | oveq1d 5868 | . . . 4 |
114 | 107, 113 | eqtrd 2203 | . . 3 |
115 | 73, 101, 114 | 3brtr4d 4021 | . 2 |
116 | 1, 2, 4, 6, 8, 10, 16, 115 | cvgratgt0 11496 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 class class class wbr 3989 cmpt 4050 cdm 4611 cfv 5198 (class class class)co 5853 cc 7772 cr 7773 cc0 7774 c1 7775 caddc 7777 cmul 7779 clt 7954 cle 7955 cdiv 8589 cn 8878 c2 8929 cn0 9135 cuz 9487 crp 9610 cseq 10401 cexp 10475 cfa 10659 cabs 10961 cli 11241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-frec 6370 df-1o 6395 df-oadd 6399 df-er 6513 df-en 6719 df-dom 6720 df-fin 6721 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-ico 9851 df-fz 9966 df-fzo 10099 df-seqfrec 10402 df-exp 10476 df-fac 10660 df-ihash 10710 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-clim 11242 df-sumdc 11317 |
This theorem is referenced by: efcllem 11622 |
Copyright terms: Public domain | W3C validator |