ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efcllemp Unicode version

Theorem efcllemp 11608
Description: Lemma for efcl 11614. The series that defines the exponential function converges. The ratio test cvgratgt0 11483 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.)
Hypotheses
Ref Expression
efcllemp.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
efcllemp.a  |-  ( ph  ->  A  e.  CC )
efcllemp.k  |-  ( ph  ->  K  e.  NN )
efcllemp.ak  |-  ( ph  ->  ( 2  x.  ( abs `  A ) )  <  K )
Assertion
Ref Expression
efcllemp  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
dom 
~~>  )
Distinct variable group:    A, n
Allowed substitution hints:    ph( n)    F( n)    K( n)

Proof of Theorem efcllemp
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9508 . 2  |-  NN0  =  ( ZZ>= `  0 )
2 eqid 2170 . 2  |-  ( ZZ>= `  K )  =  (
ZZ>= `  K )
3 halfre 9078 . . 3  |-  ( 1  /  2 )  e.  RR
43a1i 9 . 2  |-  ( ph  ->  ( 1  /  2
)  e.  RR )
5 halflt1 9082 . . 3  |-  ( 1  /  2 )  <  1
65a1i 9 . 2  |-  ( ph  ->  ( 1  /  2
)  <  1 )
7 halfgt0 9080 . . 3  |-  0  <  ( 1  /  2
)
87a1i 9 . 2  |-  ( ph  ->  0  <  ( 1  /  2 ) )
9 efcllemp.k . . 3  |-  ( ph  ->  K  e.  NN )
109nnnn0d 9175 . 2  |-  ( ph  ->  K  e.  NN0 )
11 efcllemp.a . . 3  |-  ( ph  ->  A  e.  CC )
12 efcllemp.1 . . . . 5  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
1312eftvalcn 11607 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  =  ( ( A ^ k )  /  ( ! `  k ) ) )
14 eftcl 11604 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
1513, 14eqeltrd 2247 . . 3  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  e.  CC )
1611, 15sylan 281 . 2  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  CC )
1711adantr 274 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  A  e.  CC )
1817abscld 11132 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  A )  e.  RR )
19 eluznn0 9545 . . . . . . 7  |-  ( ( K  e.  NN0  /\  k  e.  ( ZZ>= `  K ) )  -> 
k  e.  NN0 )
2010, 19sylan 281 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  k  e.  NN0 )
21 nn0p1nn 9161 . . . . . 6  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
2220, 21syl 14 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  NN )
2318, 22nndivred 8915 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A )  / 
( k  +  1 ) )  e.  RR )
243a1i 9 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 1  /  2 )  e.  RR )
2518, 20reexpcld 10613 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A ) ^
k )  e.  RR )
2620faccld 10657 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  k )  e.  NN )
2725, 26nndivred 8915 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
( abs `  A
) ^ k )  /  ( ! `  k ) )  e.  RR )
2817, 20expcld 10596 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( A ^ k )  e.  CC )
2928absge0d 11135 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  0  <_  ( abs `  ( A ^ k ) ) )
3017, 20absexpd 11143 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( A ^ k
) )  =  ( ( abs `  A
) ^ k ) )
3129, 30breqtrd 4013 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  0  <_  ( ( abs `  A
) ^ k ) )
3226nnred 8878 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  k )  e.  RR )
3326nngt0d 8909 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  0  <  ( ! `  k ) )
34 divge0 8776 . . . . 5  |-  ( ( ( ( ( abs `  A ) ^ k
)  e.  RR  /\  0  <_  ( ( abs `  A ) ^ k
) )  /\  (
( ! `  k
)  e.  RR  /\  0  <  ( ! `  k ) ) )  ->  0  <_  (
( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
3525, 31, 32, 33, 34syl22anc 1234 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  0  <_  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
36 2re 8935 . . . . . . . . . 10  |-  2  e.  RR
37 abscl 11002 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
38 remulcl 7889 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  ( abs `  A )  e.  RR )  -> 
( 2  x.  ( abs `  A ) )  e.  RR )
3936, 37, 38sylancr 412 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
2  x.  ( abs `  A ) )  e.  RR )
4017, 39syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 2  x.  ( abs `  A
) )  e.  RR )
41 peano2nn0 9162 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  ( K  +  1 )  e. 
NN0 )
4210, 41syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( K  +  1 )  e.  NN0 )
4342nn0red 9176 . . . . . . . . 9  |-  ( ph  ->  ( K  +  1 )  e.  RR )
4443adantr 274 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( K  +  1 )  e.  RR )
4522nnred 8878 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  RR )
4610adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  K  e.  NN0 )
4746nn0red 9176 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  K  e.  RR )
48 efcllemp.ak . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  ( abs `  A ) )  <  K )
4948adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 2  x.  ( abs `  A
) )  <  K
)
5047ltp1d 8833 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  K  <  ( K  +  1 ) )
5140, 47, 44, 49, 50lttrd 8032 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 2  x.  ( abs `  A
) )  <  ( K  +  1 ) )
52 eluzp1p1 9499 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  K
)  ->  ( k  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
5352adantl 275 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
54 eluzle 9486 . . . . . . . . 9  |-  ( ( k  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) )  ->  ( K  +  1 )  <_ 
( k  +  1 ) )
5553, 54syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( K  +  1 )  <_ 
( k  +  1 ) )
5640, 44, 45, 51, 55ltletrd 8329 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 2  x.  ( abs `  A
) )  <  (
k  +  1 ) )
5718recnd 7935 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  A )  e.  CC )
58 2cn 8936 . . . . . . . 8  |-  2  e.  CC
59 mulcom 7890 . . . . . . . 8  |-  ( ( ( abs `  A
)  e.  CC  /\  2  e.  CC )  ->  ( ( abs `  A
)  x.  2 )  =  ( 2  x.  ( abs `  A
) ) )
6057, 58, 59sylancl 411 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A )  x.  2 )  =  ( 2  x.  ( abs `  A ) ) )
6122nncnd 8879 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  CC )
6261mulid2d 7925 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 1  x.  ( k  +  1 ) )  =  ( k  +  1 ) )
6356, 60, 623brtr4d 4019 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A )  x.  2 )  <  (
1  x.  ( k  +  1 ) ) )
64 2rp 9602 . . . . . . . 8  |-  2  e.  RR+
6564a1i 9 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  2  e.  RR+ )
66 1red 7922 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  1  e.  RR )
6722nnrpd 9638 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  RR+ )
6818, 65, 66, 67lt2mul2divd 9709 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
( abs `  A
)  x.  2 )  <  ( 1  x.  ( k  +  1 ) )  <->  ( ( abs `  A )  / 
( k  +  1 ) )  <  (
1  /  2 ) ) )
6963, 68mpbid 146 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A )  / 
( k  +  1 ) )  <  (
1  /  2 ) )
70 ltle 7994 . . . . . 6  |-  ( ( ( ( abs `  A
)  /  ( k  +  1 ) )  e.  RR  /\  (
1  /  2 )  e.  RR )  -> 
( ( ( abs `  A )  /  (
k  +  1 ) )  <  ( 1  /  2 )  -> 
( ( abs `  A
)  /  ( k  +  1 ) )  <_  ( 1  / 
2 ) ) )
7123, 3, 70sylancl 411 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
( abs `  A
)  /  ( k  +  1 ) )  <  ( 1  / 
2 )  ->  (
( abs `  A
)  /  ( k  +  1 ) )  <_  ( 1  / 
2 ) ) )
7269, 71mpd 13 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A )  / 
( k  +  1 ) )  <_  (
1  /  2 ) )
7323, 24, 27, 35, 72lemul2ad 8843 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
( ( abs `  A
) ^ k )  /  ( ! `  k ) )  x.  ( ( abs `  A
)  /  ( k  +  1 ) ) )  <_  ( (
( ( abs `  A
) ^ k )  /  ( ! `  k ) )  x.  ( 1  /  2
) ) )
74 peano2nn0 9162 . . . . . . 7  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
7520, 74syl 14 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e. 
NN0 )
7612eftvalcn 11607 . . . . . 6  |-  ( ( A  e.  CC  /\  ( k  +  1 )  e.  NN0 )  ->  ( F `  (
k  +  1 ) )  =  ( ( A ^ ( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) )
7711, 75, 76syl2an2r 590 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( F `  ( k  +  1 ) )  =  ( ( A ^ (
k  +  1 ) )  /  ( ! `
 ( k  +  1 ) ) ) )
7877fveq2d 5498 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  (
k  +  1 ) ) )  =  ( abs `  ( ( A ^ ( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) ) )
7917, 75absexpd 11143 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( abs `  A
) ^ ( k  +  1 ) ) )
8057, 20expp1d 10597 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A ) ^
( k  +  1 ) )  =  ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) ) )
8179, 80eqtrd 2203 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) ) )
8275faccld 10657 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) )  e.  NN )
8382nnred 8878 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) )  e.  RR )
8482nnnn0d 9175 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) )  e.  NN0 )
8584nn0ge0d 9178 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  0  <_  ( ! `  ( k  +  1 ) ) )
8683, 85absidd 11118 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( ! `  (
k  +  1 ) ) )  =  ( ! `  ( k  +  1 ) ) )
87 facp1 10651 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
8820, 87syl 14 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) )  =  ( ( ! `  k
)  x.  ( k  +  1 ) ) )
8986, 88eqtrd 2203 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( ! `  (
k  +  1 ) ) )  =  ( ( ! `  k
)  x.  ( k  +  1 ) ) )
9081, 89oveq12d 5868 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  ( A ^
( k  +  1 ) ) )  / 
( abs `  ( ! `  ( k  +  1 ) ) ) )  =  ( ( ( ( abs `  A ) ^ k
)  x.  ( abs `  A ) )  / 
( ( ! `  k )  x.  (
k  +  1 ) ) ) )
9117, 75expcld 10596 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( A ^ ( k  +  1 ) )  e.  CC )
9282nncnd 8879 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) )  e.  CC )
9382nnap0d 8911 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) ) #  0 )
9491, 92, 93absdivapd 11146 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( ( A ^
( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) )  =  ( ( abs `  ( A ^ ( k  +  1 ) ) )  /  ( abs `  ( ! `  ( k  +  1 ) ) ) ) )
9525recnd 7935 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A ) ^
k )  e.  CC )
9626nncnd 8879 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  k )  e.  CC )
9726nnap0d 8911 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  k ) #  0 )
9822nnap0d 8911 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 ) #  0 )
9995, 96, 57, 61, 97, 98divmuldivapd 8736 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
( ( abs `  A
) ^ k )  /  ( ! `  k ) )  x.  ( ( abs `  A
)  /  ( k  +  1 ) ) )  =  ( ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) )  /  (
( ! `  k
)  x.  ( k  +  1 ) ) ) )
10090, 94, 993eqtr4d 2213 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( ( A ^
( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( ( abs `  A )  /  (
k  +  1 ) ) ) )
10178, 100eqtrd 2203 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  (
k  +  1 ) ) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( ( abs `  A )  /  (
k  +  1 ) ) ) )
102 halfcn 9079 . . . . 5  |-  ( 1  /  2 )  e.  CC
10311, 20, 15syl2an2r 590 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( F `  k )  e.  CC )
104103abscld 11132 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  k
) )  e.  RR )
105104recnd 7935 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  k
) )  e.  CC )
106 mulcom 7890 . . . . 5  |-  ( ( ( 1  /  2
)  e.  CC  /\  ( abs `  ( F `
 k ) )  e.  CC )  -> 
( ( 1  / 
2 )  x.  ( abs `  ( F `  k ) ) )  =  ( ( abs `  ( F `  k
) )  x.  (
1  /  2 ) ) )
107102, 105, 106sylancr 412 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
1  /  2 )  x.  ( abs `  ( F `  k )
) )  =  ( ( abs `  ( F `  k )
)  x.  ( 1  /  2 ) ) )
10811, 20, 13syl2an2r 590 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( F `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
109108fveq2d 5498 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  k
) )  =  ( abs `  ( ( A ^ k )  /  ( ! `  k ) ) ) )
110 eftabs 11606 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  (
( A ^ k
)  /  ( ! `
 k ) ) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
11111, 20, 110syl2an2r 590 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( ( A ^
k )  /  ( ! `  k )
) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
112109, 111eqtrd 2203 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  k
) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
113112oveq1d 5865 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  ( F `  k ) )  x.  ( 1  /  2
) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( 1  / 
2 ) ) )
114107, 113eqtrd 2203 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
1  /  2 )  x.  ( abs `  ( F `  k )
) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( 1  / 
2 ) ) )
11573, 101, 1143brtr4d 4019 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( 1  /  2
)  x.  ( abs `  ( F `  k
) ) ) )
1161, 2, 4, 6, 8, 10, 16, 115cvgratgt0 11483 1  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
dom 
~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   class class class wbr 3987    |-> cmpt 4048   dom cdm 4609   ` cfv 5196  (class class class)co 5850   CCcc 7759   RRcr 7760   0cc0 7761   1c1 7762    + caddc 7764    x. cmul 7766    < clt 7941    <_ cle 7942    / cdiv 8576   NNcn 8865   2c2 8916   NN0cn0 9122   ZZ>=cuz 9474   RR+crp 9597    seqcseq 10388   ^cexp 10462   !cfa 10646   abscabs 10948    ~~> cli 11228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-frec 6367  df-1o 6392  df-oadd 6396  df-er 6509  df-en 6715  df-dom 6716  df-fin 6717  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-n0 9123  df-z 9200  df-uz 9475  df-q 9566  df-rp 9598  df-ico 9838  df-fz 9953  df-fzo 10086  df-seqfrec 10389  df-exp 10463  df-fac 10647  df-ihash 10697  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950  df-clim 11229  df-sumdc 11304
This theorem is referenced by:  efcllem  11609
  Copyright terms: Public domain W3C validator