ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efcllemp Unicode version

Theorem efcllemp 11680
Description: Lemma for efcl 11686. The series that defines the exponential function converges. The ratio test cvgratgt0 11555 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.)
Hypotheses
Ref Expression
efcllemp.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
efcllemp.a  |-  ( ph  ->  A  e.  CC )
efcllemp.k  |-  ( ph  ->  K  e.  NN )
efcllemp.ak  |-  ( ph  ->  ( 2  x.  ( abs `  A ) )  <  K )
Assertion
Ref Expression
efcllemp  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
dom 
~~>  )
Distinct variable group:    A, n
Allowed substitution hints:    ph( n)    F( n)    K( n)

Proof of Theorem efcllemp
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9576 . 2  |-  NN0  =  ( ZZ>= `  0 )
2 eqid 2187 . 2  |-  ( ZZ>= `  K )  =  (
ZZ>= `  K )
3 halfre 9146 . . 3  |-  ( 1  /  2 )  e.  RR
43a1i 9 . 2  |-  ( ph  ->  ( 1  /  2
)  e.  RR )
5 halflt1 9150 . . 3  |-  ( 1  /  2 )  <  1
65a1i 9 . 2  |-  ( ph  ->  ( 1  /  2
)  <  1 )
7 halfgt0 9148 . . 3  |-  0  <  ( 1  /  2
)
87a1i 9 . 2  |-  ( ph  ->  0  <  ( 1  /  2 ) )
9 efcllemp.k . . 3  |-  ( ph  ->  K  e.  NN )
109nnnn0d 9243 . 2  |-  ( ph  ->  K  e.  NN0 )
11 efcllemp.a . . 3  |-  ( ph  ->  A  e.  CC )
12 efcllemp.1 . . . . 5  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
1312eftvalcn 11679 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  =  ( ( A ^ k )  /  ( ! `  k ) ) )
14 eftcl 11676 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
1513, 14eqeltrd 2264 . . 3  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  e.  CC )
1611, 15sylan 283 . 2  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  CC )
1711adantr 276 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  A  e.  CC )
1817abscld 11204 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  A )  e.  RR )
19 eluznn0 9613 . . . . . . 7  |-  ( ( K  e.  NN0  /\  k  e.  ( ZZ>= `  K ) )  -> 
k  e.  NN0 )
2010, 19sylan 283 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  k  e.  NN0 )
21 nn0p1nn 9229 . . . . . 6  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
2220, 21syl 14 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  NN )
2318, 22nndivred 8983 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A )  / 
( k  +  1 ) )  e.  RR )
243a1i 9 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 1  /  2 )  e.  RR )
2518, 20reexpcld 10685 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A ) ^
k )  e.  RR )
2620faccld 10730 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  k )  e.  NN )
2725, 26nndivred 8983 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
( abs `  A
) ^ k )  /  ( ! `  k ) )  e.  RR )
2817, 20expcld 10668 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( A ^ k )  e.  CC )
2928absge0d 11207 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  0  <_  ( abs `  ( A ^ k ) ) )
3017, 20absexpd 11215 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( A ^ k
) )  =  ( ( abs `  A
) ^ k ) )
3129, 30breqtrd 4041 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  0  <_  ( ( abs `  A
) ^ k ) )
3226nnred 8946 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  k )  e.  RR )
3326nngt0d 8977 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  0  <  ( ! `  k ) )
34 divge0 8844 . . . . 5  |-  ( ( ( ( ( abs `  A ) ^ k
)  e.  RR  /\  0  <_  ( ( abs `  A ) ^ k
) )  /\  (
( ! `  k
)  e.  RR  /\  0  <  ( ! `  k ) ) )  ->  0  <_  (
( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
3525, 31, 32, 33, 34syl22anc 1249 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  0  <_  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
36 2re 9003 . . . . . . . . . 10  |-  2  e.  RR
37 abscl 11074 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
38 remulcl 7953 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  ( abs `  A )  e.  RR )  -> 
( 2  x.  ( abs `  A ) )  e.  RR )
3936, 37, 38sylancr 414 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
2  x.  ( abs `  A ) )  e.  RR )
4017, 39syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 2  x.  ( abs `  A
) )  e.  RR )
41 peano2nn0 9230 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  ( K  +  1 )  e. 
NN0 )
4210, 41syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( K  +  1 )  e.  NN0 )
4342nn0red 9244 . . . . . . . . 9  |-  ( ph  ->  ( K  +  1 )  e.  RR )
4443adantr 276 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( K  +  1 )  e.  RR )
4522nnred 8946 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  RR )
4610adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  K  e.  NN0 )
4746nn0red 9244 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  K  e.  RR )
48 efcllemp.ak . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  ( abs `  A ) )  <  K )
4948adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 2  x.  ( abs `  A
) )  <  K
)
5047ltp1d 8901 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  K  <  ( K  +  1 ) )
5140, 47, 44, 49, 50lttrd 8097 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 2  x.  ( abs `  A
) )  <  ( K  +  1 ) )
52 eluzp1p1 9567 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  K
)  ->  ( k  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
5352adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
54 eluzle 9554 . . . . . . . . 9  |-  ( ( k  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) )  ->  ( K  +  1 )  <_ 
( k  +  1 ) )
5553, 54syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( K  +  1 )  <_ 
( k  +  1 ) )
5640, 44, 45, 51, 55ltletrd 8394 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 2  x.  ( abs `  A
) )  <  (
k  +  1 ) )
5718recnd 8000 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  A )  e.  CC )
58 2cn 9004 . . . . . . . 8  |-  2  e.  CC
59 mulcom 7954 . . . . . . . 8  |-  ( ( ( abs `  A
)  e.  CC  /\  2  e.  CC )  ->  ( ( abs `  A
)  x.  2 )  =  ( 2  x.  ( abs `  A
) ) )
6057, 58, 59sylancl 413 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A )  x.  2 )  =  ( 2  x.  ( abs `  A ) ) )
6122nncnd 8947 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  CC )
6261mulid2d 7990 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 1  x.  ( k  +  1 ) )  =  ( k  +  1 ) )
6356, 60, 623brtr4d 4047 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A )  x.  2 )  <  (
1  x.  ( k  +  1 ) ) )
64 2rp 9672 . . . . . . . 8  |-  2  e.  RR+
6564a1i 9 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  2  e.  RR+ )
66 1red 7986 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  1  e.  RR )
6722nnrpd 9708 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  RR+ )
6818, 65, 66, 67lt2mul2divd 9779 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
( abs `  A
)  x.  2 )  <  ( 1  x.  ( k  +  1 ) )  <->  ( ( abs `  A )  / 
( k  +  1 ) )  <  (
1  /  2 ) ) )
6963, 68mpbid 147 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A )  / 
( k  +  1 ) )  <  (
1  /  2 ) )
70 ltle 8059 . . . . . 6  |-  ( ( ( ( abs `  A
)  /  ( k  +  1 ) )  e.  RR  /\  (
1  /  2 )  e.  RR )  -> 
( ( ( abs `  A )  /  (
k  +  1 ) )  <  ( 1  /  2 )  -> 
( ( abs `  A
)  /  ( k  +  1 ) )  <_  ( 1  / 
2 ) ) )
7123, 3, 70sylancl 413 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
( abs `  A
)  /  ( k  +  1 ) )  <  ( 1  / 
2 )  ->  (
( abs `  A
)  /  ( k  +  1 ) )  <_  ( 1  / 
2 ) ) )
7269, 71mpd 13 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A )  / 
( k  +  1 ) )  <_  (
1  /  2 ) )
7323, 24, 27, 35, 72lemul2ad 8911 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
( ( abs `  A
) ^ k )  /  ( ! `  k ) )  x.  ( ( abs `  A
)  /  ( k  +  1 ) ) )  <_  ( (
( ( abs `  A
) ^ k )  /  ( ! `  k ) )  x.  ( 1  /  2
) ) )
74 peano2nn0 9230 . . . . . . 7  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
7520, 74syl 14 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e. 
NN0 )
7612eftvalcn 11679 . . . . . 6  |-  ( ( A  e.  CC  /\  ( k  +  1 )  e.  NN0 )  ->  ( F `  (
k  +  1 ) )  =  ( ( A ^ ( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) )
7711, 75, 76syl2an2r 595 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( F `  ( k  +  1 ) )  =  ( ( A ^ (
k  +  1 ) )  /  ( ! `
 ( k  +  1 ) ) ) )
7877fveq2d 5531 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  (
k  +  1 ) ) )  =  ( abs `  ( ( A ^ ( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) ) )
7917, 75absexpd 11215 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( abs `  A
) ^ ( k  +  1 ) ) )
8057, 20expp1d 10669 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A ) ^
( k  +  1 ) )  =  ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) ) )
8179, 80eqtrd 2220 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) ) )
8275faccld 10730 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) )  e.  NN )
8382nnred 8946 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) )  e.  RR )
8482nnnn0d 9243 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) )  e.  NN0 )
8584nn0ge0d 9246 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  0  <_  ( ! `  ( k  +  1 ) ) )
8683, 85absidd 11190 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( ! `  (
k  +  1 ) ) )  =  ( ! `  ( k  +  1 ) ) )
87 facp1 10724 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
8820, 87syl 14 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) )  =  ( ( ! `  k
)  x.  ( k  +  1 ) ) )
8986, 88eqtrd 2220 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( ! `  (
k  +  1 ) ) )  =  ( ( ! `  k
)  x.  ( k  +  1 ) ) )
9081, 89oveq12d 5906 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  ( A ^
( k  +  1 ) ) )  / 
( abs `  ( ! `  ( k  +  1 ) ) ) )  =  ( ( ( ( abs `  A ) ^ k
)  x.  ( abs `  A ) )  / 
( ( ! `  k )  x.  (
k  +  1 ) ) ) )
9117, 75expcld 10668 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( A ^ ( k  +  1 ) )  e.  CC )
9282nncnd 8947 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) )  e.  CC )
9382nnap0d 8979 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) ) #  0 )
9491, 92, 93absdivapd 11218 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( ( A ^
( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) )  =  ( ( abs `  ( A ^ ( k  +  1 ) ) )  /  ( abs `  ( ! `  ( k  +  1 ) ) ) ) )
9525recnd 8000 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A ) ^
k )  e.  CC )
9626nncnd 8947 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  k )  e.  CC )
9726nnap0d 8979 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  k ) #  0 )
9822nnap0d 8979 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 ) #  0 )
9995, 96, 57, 61, 97, 98divmuldivapd 8803 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
( ( abs `  A
) ^ k )  /  ( ! `  k ) )  x.  ( ( abs `  A
)  /  ( k  +  1 ) ) )  =  ( ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) )  /  (
( ! `  k
)  x.  ( k  +  1 ) ) ) )
10090, 94, 993eqtr4d 2230 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( ( A ^
( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( ( abs `  A )  /  (
k  +  1 ) ) ) )
10178, 100eqtrd 2220 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  (
k  +  1 ) ) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( ( abs `  A )  /  (
k  +  1 ) ) ) )
102 halfcn 9147 . . . . 5  |-  ( 1  /  2 )  e.  CC
10311, 20, 15syl2an2r 595 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( F `  k )  e.  CC )
104103abscld 11204 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  k
) )  e.  RR )
105104recnd 8000 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  k
) )  e.  CC )
106 mulcom 7954 . . . . 5  |-  ( ( ( 1  /  2
)  e.  CC  /\  ( abs `  ( F `
 k ) )  e.  CC )  -> 
( ( 1  / 
2 )  x.  ( abs `  ( F `  k ) ) )  =  ( ( abs `  ( F `  k
) )  x.  (
1  /  2 ) ) )
107102, 105, 106sylancr 414 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
1  /  2 )  x.  ( abs `  ( F `  k )
) )  =  ( ( abs `  ( F `  k )
)  x.  ( 1  /  2 ) ) )
10811, 20, 13syl2an2r 595 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( F `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
109108fveq2d 5531 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  k
) )  =  ( abs `  ( ( A ^ k )  /  ( ! `  k ) ) ) )
110 eftabs 11678 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  (
( A ^ k
)  /  ( ! `
 k ) ) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
11111, 20, 110syl2an2r 595 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( ( A ^
k )  /  ( ! `  k )
) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
112109, 111eqtrd 2220 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  k
) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
113112oveq1d 5903 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  ( F `  k ) )  x.  ( 1  /  2
) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( 1  / 
2 ) ) )
114107, 113eqtrd 2220 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
1  /  2 )  x.  ( abs `  ( F `  k )
) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( 1  / 
2 ) ) )
11573, 101, 1143brtr4d 4047 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( 1  /  2
)  x.  ( abs `  ( F `  k
) ) ) )
1161, 2, 4, 6, 8, 10, 16, 115cvgratgt0 11555 1  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
dom 
~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   class class class wbr 4015    |-> cmpt 4076   dom cdm 4638   ` cfv 5228  (class class class)co 5888   CCcc 7823   RRcr 7824   0cc0 7825   1c1 7826    + caddc 7828    x. cmul 7830    < clt 8006    <_ cle 8007    / cdiv 8643   NNcn 8933   2c2 8984   NN0cn0 9190   ZZ>=cuz 9542   RR+crp 9667    seqcseq 10459   ^cexp 10533   !cfa 10719   abscabs 11020    ~~> cli 11300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943  ax-arch 7944  ax-caucvg 7945
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-irdg 6385  df-frec 6406  df-1o 6431  df-oadd 6435  df-er 6549  df-en 6755  df-dom 6756  df-fin 6757  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-n0 9191  df-z 9268  df-uz 9543  df-q 9634  df-rp 9668  df-ico 9908  df-fz 10023  df-fzo 10157  df-seqfrec 10460  df-exp 10534  df-fac 10720  df-ihash 10770  df-cj 10865  df-re 10866  df-im 10867  df-rsqrt 11021  df-abs 11022  df-clim 11301  df-sumdc 11376
This theorem is referenced by:  efcllem  11681
  Copyright terms: Public domain W3C validator