| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > efcllemp | Unicode version | ||
| Description: Lemma for efcl 12050. The series that defines the exponential function converges. The ratio test cvgratgt0 11919 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.) |
| Ref | Expression |
|---|---|
| efcllemp.1 |
|
| efcllemp.a |
|
| efcllemp.k |
|
| efcllemp.ak |
|
| Ref | Expression |
|---|---|
| efcllemp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 9703 |
. 2
| |
| 2 | eqid 2206 |
. 2
| |
| 3 | halfre 9270 |
. . 3
| |
| 4 | 3 | a1i 9 |
. 2
|
| 5 | halflt1 9274 |
. . 3
| |
| 6 | 5 | a1i 9 |
. 2
|
| 7 | halfgt0 9272 |
. . 3
| |
| 8 | 7 | a1i 9 |
. 2
|
| 9 | efcllemp.k |
. . 3
| |
| 10 | 9 | nnnn0d 9368 |
. 2
|
| 11 | efcllemp.a |
. . 3
| |
| 12 | efcllemp.1 |
. . . . 5
| |
| 13 | 12 | eftvalcn 12043 |
. . . 4
|
| 14 | eftcl 12040 |
. . . 4
| |
| 15 | 13, 14 | eqeltrd 2283 |
. . 3
|
| 16 | 11, 15 | sylan 283 |
. 2
|
| 17 | 11 | adantr 276 |
. . . . . 6
|
| 18 | 17 | abscld 11567 |
. . . . 5
|
| 19 | eluznn0 9740 |
. . . . . . 7
| |
| 20 | 10, 19 | sylan 283 |
. . . . . 6
|
| 21 | nn0p1nn 9354 |
. . . . . 6
| |
| 22 | 20, 21 | syl 14 |
. . . . 5
|
| 23 | 18, 22 | nndivred 9106 |
. . . 4
|
| 24 | 3 | a1i 9 |
. . . 4
|
| 25 | 18, 20 | reexpcld 10857 |
. . . . 5
|
| 26 | 20 | faccld 10903 |
. . . . 5
|
| 27 | 25, 26 | nndivred 9106 |
. . . 4
|
| 28 | 17, 20 | expcld 10840 |
. . . . . . 7
|
| 29 | 28 | absge0d 11570 |
. . . . . 6
|
| 30 | 17, 20 | absexpd 11578 |
. . . . . 6
|
| 31 | 29, 30 | breqtrd 4077 |
. . . . 5
|
| 32 | 26 | nnred 9069 |
. . . . 5
|
| 33 | 26 | nngt0d 9100 |
. . . . 5
|
| 34 | divge0 8966 |
. . . . 5
| |
| 35 | 25, 31, 32, 33, 34 | syl22anc 1251 |
. . . 4
|
| 36 | 2re 9126 |
. . . . . . . . . 10
| |
| 37 | abscl 11437 |
. . . . . . . . . 10
| |
| 38 | remulcl 8073 |
. . . . . . . . . 10
| |
| 39 | 36, 37, 38 | sylancr 414 |
. . . . . . . . 9
|
| 40 | 17, 39 | syl 14 |
. . . . . . . 8
|
| 41 | peano2nn0 9355 |
. . . . . . . . . . 11
| |
| 42 | 10, 41 | syl 14 |
. . . . . . . . . 10
|
| 43 | 42 | nn0red 9369 |
. . . . . . . . 9
|
| 44 | 43 | adantr 276 |
. . . . . . . 8
|
| 45 | 22 | nnred 9069 |
. . . . . . . 8
|
| 46 | 10 | adantr 276 |
. . . . . . . . . 10
|
| 47 | 46 | nn0red 9369 |
. . . . . . . . 9
|
| 48 | efcllemp.ak |
. . . . . . . . . 10
| |
| 49 | 48 | adantr 276 |
. . . . . . . . 9
|
| 50 | 47 | ltp1d 9023 |
. . . . . . . . 9
|
| 51 | 40, 47, 44, 49, 50 | lttrd 8218 |
. . . . . . . 8
|
| 52 | eluzp1p1 9694 |
. . . . . . . . . 10
| |
| 53 | 52 | adantl 277 |
. . . . . . . . 9
|
| 54 | eluzle 9680 |
. . . . . . . . 9
| |
| 55 | 53, 54 | syl 14 |
. . . . . . . 8
|
| 56 | 40, 44, 45, 51, 55 | ltletrd 8516 |
. . . . . . 7
|
| 57 | 18 | recnd 8121 |
. . . . . . . 8
|
| 58 | 2cn 9127 |
. . . . . . . 8
| |
| 59 | mulcom 8074 |
. . . . . . . 8
| |
| 60 | 57, 58, 59 | sylancl 413 |
. . . . . . 7
|
| 61 | 22 | nncnd 9070 |
. . . . . . . 8
|
| 62 | 61 | mulid2d 8111 |
. . . . . . 7
|
| 63 | 56, 60, 62 | 3brtr4d 4083 |
. . . . . 6
|
| 64 | 2rp 9800 |
. . . . . . . 8
| |
| 65 | 64 | a1i 9 |
. . . . . . 7
|
| 66 | 1red 8107 |
. . . . . . 7
| |
| 67 | 22 | nnrpd 9836 |
. . . . . . 7
|
| 68 | 18, 65, 66, 67 | lt2mul2divd 9907 |
. . . . . 6
|
| 69 | 63, 68 | mpbid 147 |
. . . . 5
|
| 70 | ltle 8180 |
. . . . . 6
| |
| 71 | 23, 3, 70 | sylancl 413 |
. . . . 5
|
| 72 | 69, 71 | mpd 13 |
. . . 4
|
| 73 | 23, 24, 27, 35, 72 | lemul2ad 9033 |
. . 3
|
| 74 | peano2nn0 9355 |
. . . . . . 7
| |
| 75 | 20, 74 | syl 14 |
. . . . . 6
|
| 76 | 12 | eftvalcn 12043 |
. . . . . 6
|
| 77 | 11, 75, 76 | syl2an2r 595 |
. . . . 5
|
| 78 | 77 | fveq2d 5593 |
. . . 4
|
| 79 | 17, 75 | absexpd 11578 |
. . . . . . 7
|
| 80 | 57, 20 | expp1d 10841 |
. . . . . . 7
|
| 81 | 79, 80 | eqtrd 2239 |
. . . . . 6
|
| 82 | 75 | faccld 10903 |
. . . . . . . . 9
|
| 83 | 82 | nnred 9069 |
. . . . . . . 8
|
| 84 | 82 | nnnn0d 9368 |
. . . . . . . . 9
|
| 85 | 84 | nn0ge0d 9371 |
. . . . . . . 8
|
| 86 | 83, 85 | absidd 11553 |
. . . . . . 7
|
| 87 | facp1 10897 |
. . . . . . . 8
| |
| 88 | 20, 87 | syl 14 |
. . . . . . 7
|
| 89 | 86, 88 | eqtrd 2239 |
. . . . . 6
|
| 90 | 81, 89 | oveq12d 5975 |
. . . . 5
|
| 91 | 17, 75 | expcld 10840 |
. . . . . 6
|
| 92 | 82 | nncnd 9070 |
. . . . . 6
|
| 93 | 82 | nnap0d 9102 |
. . . . . 6
|
| 94 | 91, 92, 93 | absdivapd 11581 |
. . . . 5
|
| 95 | 25 | recnd 8121 |
. . . . . 6
|
| 96 | 26 | nncnd 9070 |
. . . . . 6
|
| 97 | 26 | nnap0d 9102 |
. . . . . 6
|
| 98 | 22 | nnap0d 9102 |
. . . . . 6
|
| 99 | 95, 96, 57, 61, 97, 98 | divmuldivapd 8925 |
. . . . 5
|
| 100 | 90, 94, 99 | 3eqtr4d 2249 |
. . . 4
|
| 101 | 78, 100 | eqtrd 2239 |
. . 3
|
| 102 | halfcn 9271 |
. . . . 5
| |
| 103 | 11, 20, 15 | syl2an2r 595 |
. . . . . . 7
|
| 104 | 103 | abscld 11567 |
. . . . . 6
|
| 105 | 104 | recnd 8121 |
. . . . 5
|
| 106 | mulcom 8074 |
. . . . 5
| |
| 107 | 102, 105, 106 | sylancr 414 |
. . . 4
|
| 108 | 11, 20, 13 | syl2an2r 595 |
. . . . . . 7
|
| 109 | 108 | fveq2d 5593 |
. . . . . 6
|
| 110 | eftabs 12042 |
. . . . . . 7
| |
| 111 | 11, 20, 110 | syl2an2r 595 |
. . . . . 6
|
| 112 | 109, 111 | eqtrd 2239 |
. . . . 5
|
| 113 | 112 | oveq1d 5972 |
. . . 4
|
| 114 | 107, 113 | eqtrd 2239 |
. . 3
|
| 115 | 73, 101, 114 | 3brtr4d 4083 |
. 2
|
| 116 | 1, 2, 4, 6, 8, 10, 16, 115 | cvgratgt0 11919 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-isom 5289 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-frec 6490 df-1o 6515 df-oadd 6519 df-er 6633 df-en 6841 df-dom 6842 df-fin 6843 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-n0 9316 df-z 9393 df-uz 9669 df-q 9761 df-rp 9796 df-ico 10036 df-fz 10151 df-fzo 10285 df-seqfrec 10615 df-exp 10706 df-fac 10893 df-ihash 10943 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 df-clim 11665 df-sumdc 11740 |
| This theorem is referenced by: efcllem 12045 |
| Copyright terms: Public domain | W3C validator |