| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > efcllemp | Unicode version | ||
| Description: Lemma for efcl 11894. The series that defines the exponential function converges. The ratio test cvgratgt0 11763 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.) |
| Ref | Expression |
|---|---|
| efcllemp.1 |
|
| efcllemp.a |
|
| efcllemp.k |
|
| efcllemp.ak |
|
| Ref | Expression |
|---|---|
| efcllemp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 9665 |
. 2
| |
| 2 | eqid 2204 |
. 2
| |
| 3 | halfre 9232 |
. . 3
| |
| 4 | 3 | a1i 9 |
. 2
|
| 5 | halflt1 9236 |
. . 3
| |
| 6 | 5 | a1i 9 |
. 2
|
| 7 | halfgt0 9234 |
. . 3
| |
| 8 | 7 | a1i 9 |
. 2
|
| 9 | efcllemp.k |
. . 3
| |
| 10 | 9 | nnnn0d 9330 |
. 2
|
| 11 | efcllemp.a |
. . 3
| |
| 12 | efcllemp.1 |
. . . . 5
| |
| 13 | 12 | eftvalcn 11887 |
. . . 4
|
| 14 | eftcl 11884 |
. . . 4
| |
| 15 | 13, 14 | eqeltrd 2281 |
. . 3
|
| 16 | 11, 15 | sylan 283 |
. 2
|
| 17 | 11 | adantr 276 |
. . . . . 6
|
| 18 | 17 | abscld 11411 |
. . . . 5
|
| 19 | eluznn0 9702 |
. . . . . . 7
| |
| 20 | 10, 19 | sylan 283 |
. . . . . 6
|
| 21 | nn0p1nn 9316 |
. . . . . 6
| |
| 22 | 20, 21 | syl 14 |
. . . . 5
|
| 23 | 18, 22 | nndivred 9068 |
. . . 4
|
| 24 | 3 | a1i 9 |
. . . 4
|
| 25 | 18, 20 | reexpcld 10816 |
. . . . 5
|
| 26 | 20 | faccld 10862 |
. . . . 5
|
| 27 | 25, 26 | nndivred 9068 |
. . . 4
|
| 28 | 17, 20 | expcld 10799 |
. . . . . . 7
|
| 29 | 28 | absge0d 11414 |
. . . . . 6
|
| 30 | 17, 20 | absexpd 11422 |
. . . . . 6
|
| 31 | 29, 30 | breqtrd 4069 |
. . . . 5
|
| 32 | 26 | nnred 9031 |
. . . . 5
|
| 33 | 26 | nngt0d 9062 |
. . . . 5
|
| 34 | divge0 8928 |
. . . . 5
| |
| 35 | 25, 31, 32, 33, 34 | syl22anc 1250 |
. . . 4
|
| 36 | 2re 9088 |
. . . . . . . . . 10
| |
| 37 | abscl 11281 |
. . . . . . . . . 10
| |
| 38 | remulcl 8035 |
. . . . . . . . . 10
| |
| 39 | 36, 37, 38 | sylancr 414 |
. . . . . . . . 9
|
| 40 | 17, 39 | syl 14 |
. . . . . . . 8
|
| 41 | peano2nn0 9317 |
. . . . . . . . . . 11
| |
| 42 | 10, 41 | syl 14 |
. . . . . . . . . 10
|
| 43 | 42 | nn0red 9331 |
. . . . . . . . 9
|
| 44 | 43 | adantr 276 |
. . . . . . . 8
|
| 45 | 22 | nnred 9031 |
. . . . . . . 8
|
| 46 | 10 | adantr 276 |
. . . . . . . . . 10
|
| 47 | 46 | nn0red 9331 |
. . . . . . . . 9
|
| 48 | efcllemp.ak |
. . . . . . . . . 10
| |
| 49 | 48 | adantr 276 |
. . . . . . . . 9
|
| 50 | 47 | ltp1d 8985 |
. . . . . . . . 9
|
| 51 | 40, 47, 44, 49, 50 | lttrd 8180 |
. . . . . . . 8
|
| 52 | eluzp1p1 9656 |
. . . . . . . . . 10
| |
| 53 | 52 | adantl 277 |
. . . . . . . . 9
|
| 54 | eluzle 9642 |
. . . . . . . . 9
| |
| 55 | 53, 54 | syl 14 |
. . . . . . . 8
|
| 56 | 40, 44, 45, 51, 55 | ltletrd 8478 |
. . . . . . 7
|
| 57 | 18 | recnd 8083 |
. . . . . . . 8
|
| 58 | 2cn 9089 |
. . . . . . . 8
| |
| 59 | mulcom 8036 |
. . . . . . . 8
| |
| 60 | 57, 58, 59 | sylancl 413 |
. . . . . . 7
|
| 61 | 22 | nncnd 9032 |
. . . . . . . 8
|
| 62 | 61 | mulid2d 8073 |
. . . . . . 7
|
| 63 | 56, 60, 62 | 3brtr4d 4075 |
. . . . . 6
|
| 64 | 2rp 9762 |
. . . . . . . 8
| |
| 65 | 64 | a1i 9 |
. . . . . . 7
|
| 66 | 1red 8069 |
. . . . . . 7
| |
| 67 | 22 | nnrpd 9798 |
. . . . . . 7
|
| 68 | 18, 65, 66, 67 | lt2mul2divd 9869 |
. . . . . 6
|
| 69 | 63, 68 | mpbid 147 |
. . . . 5
|
| 70 | ltle 8142 |
. . . . . 6
| |
| 71 | 23, 3, 70 | sylancl 413 |
. . . . 5
|
| 72 | 69, 71 | mpd 13 |
. . . 4
|
| 73 | 23, 24, 27, 35, 72 | lemul2ad 8995 |
. . 3
|
| 74 | peano2nn0 9317 |
. . . . . . 7
| |
| 75 | 20, 74 | syl 14 |
. . . . . 6
|
| 76 | 12 | eftvalcn 11887 |
. . . . . 6
|
| 77 | 11, 75, 76 | syl2an2r 595 |
. . . . 5
|
| 78 | 77 | fveq2d 5574 |
. . . 4
|
| 79 | 17, 75 | absexpd 11422 |
. . . . . . 7
|
| 80 | 57, 20 | expp1d 10800 |
. . . . . . 7
|
| 81 | 79, 80 | eqtrd 2237 |
. . . . . 6
|
| 82 | 75 | faccld 10862 |
. . . . . . . . 9
|
| 83 | 82 | nnred 9031 |
. . . . . . . 8
|
| 84 | 82 | nnnn0d 9330 |
. . . . . . . . 9
|
| 85 | 84 | nn0ge0d 9333 |
. . . . . . . 8
|
| 86 | 83, 85 | absidd 11397 |
. . . . . . 7
|
| 87 | facp1 10856 |
. . . . . . . 8
| |
| 88 | 20, 87 | syl 14 |
. . . . . . 7
|
| 89 | 86, 88 | eqtrd 2237 |
. . . . . 6
|
| 90 | 81, 89 | oveq12d 5952 |
. . . . 5
|
| 91 | 17, 75 | expcld 10799 |
. . . . . 6
|
| 92 | 82 | nncnd 9032 |
. . . . . 6
|
| 93 | 82 | nnap0d 9064 |
. . . . . 6
|
| 94 | 91, 92, 93 | absdivapd 11425 |
. . . . 5
|
| 95 | 25 | recnd 8083 |
. . . . . 6
|
| 96 | 26 | nncnd 9032 |
. . . . . 6
|
| 97 | 26 | nnap0d 9064 |
. . . . . 6
|
| 98 | 22 | nnap0d 9064 |
. . . . . 6
|
| 99 | 95, 96, 57, 61, 97, 98 | divmuldivapd 8887 |
. . . . 5
|
| 100 | 90, 94, 99 | 3eqtr4d 2247 |
. . . 4
|
| 101 | 78, 100 | eqtrd 2237 |
. . 3
|
| 102 | halfcn 9233 |
. . . . 5
| |
| 103 | 11, 20, 15 | syl2an2r 595 |
. . . . . . 7
|
| 104 | 103 | abscld 11411 |
. . . . . 6
|
| 105 | 104 | recnd 8083 |
. . . . 5
|
| 106 | mulcom 8036 |
. . . . 5
| |
| 107 | 102, 105, 106 | sylancr 414 |
. . . 4
|
| 108 | 11, 20, 13 | syl2an2r 595 |
. . . . . . 7
|
| 109 | 108 | fveq2d 5574 |
. . . . . 6
|
| 110 | eftabs 11886 |
. . . . . . 7
| |
| 111 | 11, 20, 110 | syl2an2r 595 |
. . . . . 6
|
| 112 | 109, 111 | eqtrd 2237 |
. . . . 5
|
| 113 | 112 | oveq1d 5949 |
. . . 4
|
| 114 | 107, 113 | eqtrd 2237 |
. . 3
|
| 115 | 73, 101, 114 | 3brtr4d 4075 |
. 2
|
| 116 | 1, 2, 4, 6, 8, 10, 16, 115 | cvgratgt0 11763 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 ax-arch 8026 ax-caucvg 8027 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-po 4341 df-iso 4342 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-isom 5277 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-irdg 6446 df-frec 6467 df-1o 6492 df-oadd 6496 df-er 6610 df-en 6818 df-dom 6819 df-fin 6820 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-n0 9278 df-z 9355 df-uz 9631 df-q 9723 df-rp 9758 df-ico 9998 df-fz 10113 df-fzo 10247 df-seqfrec 10574 df-exp 10665 df-fac 10852 df-ihash 10902 df-cj 11072 df-re 11073 df-im 11074 df-rsqrt 11228 df-abs 11229 df-clim 11509 df-sumdc 11584 |
| This theorem is referenced by: efcllem 11889 |
| Copyright terms: Public domain | W3C validator |