| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > efcllemp | Unicode version | ||
| Description: Lemma for efcl 11917. The series that defines the exponential function converges. The ratio test cvgratgt0 11786 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.) |
| Ref | Expression |
|---|---|
| efcllemp.1 |
|
| efcllemp.a |
|
| efcllemp.k |
|
| efcllemp.ak |
|
| Ref | Expression |
|---|---|
| efcllemp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 9682 |
. 2
| |
| 2 | eqid 2204 |
. 2
| |
| 3 | halfre 9249 |
. . 3
| |
| 4 | 3 | a1i 9 |
. 2
|
| 5 | halflt1 9253 |
. . 3
| |
| 6 | 5 | a1i 9 |
. 2
|
| 7 | halfgt0 9251 |
. . 3
| |
| 8 | 7 | a1i 9 |
. 2
|
| 9 | efcllemp.k |
. . 3
| |
| 10 | 9 | nnnn0d 9347 |
. 2
|
| 11 | efcllemp.a |
. . 3
| |
| 12 | efcllemp.1 |
. . . . 5
| |
| 13 | 12 | eftvalcn 11910 |
. . . 4
|
| 14 | eftcl 11907 |
. . . 4
| |
| 15 | 13, 14 | eqeltrd 2281 |
. . 3
|
| 16 | 11, 15 | sylan 283 |
. 2
|
| 17 | 11 | adantr 276 |
. . . . . 6
|
| 18 | 17 | abscld 11434 |
. . . . 5
|
| 19 | eluznn0 9719 |
. . . . . . 7
| |
| 20 | 10, 19 | sylan 283 |
. . . . . 6
|
| 21 | nn0p1nn 9333 |
. . . . . 6
| |
| 22 | 20, 21 | syl 14 |
. . . . 5
|
| 23 | 18, 22 | nndivred 9085 |
. . . 4
|
| 24 | 3 | a1i 9 |
. . . 4
|
| 25 | 18, 20 | reexpcld 10833 |
. . . . 5
|
| 26 | 20 | faccld 10879 |
. . . . 5
|
| 27 | 25, 26 | nndivred 9085 |
. . . 4
|
| 28 | 17, 20 | expcld 10816 |
. . . . . . 7
|
| 29 | 28 | absge0d 11437 |
. . . . . 6
|
| 30 | 17, 20 | absexpd 11445 |
. . . . . 6
|
| 31 | 29, 30 | breqtrd 4069 |
. . . . 5
|
| 32 | 26 | nnred 9048 |
. . . . 5
|
| 33 | 26 | nngt0d 9079 |
. . . . 5
|
| 34 | divge0 8945 |
. . . . 5
| |
| 35 | 25, 31, 32, 33, 34 | syl22anc 1250 |
. . . 4
|
| 36 | 2re 9105 |
. . . . . . . . . 10
| |
| 37 | abscl 11304 |
. . . . . . . . . 10
| |
| 38 | remulcl 8052 |
. . . . . . . . . 10
| |
| 39 | 36, 37, 38 | sylancr 414 |
. . . . . . . . 9
|
| 40 | 17, 39 | syl 14 |
. . . . . . . 8
|
| 41 | peano2nn0 9334 |
. . . . . . . . . . 11
| |
| 42 | 10, 41 | syl 14 |
. . . . . . . . . 10
|
| 43 | 42 | nn0red 9348 |
. . . . . . . . 9
|
| 44 | 43 | adantr 276 |
. . . . . . . 8
|
| 45 | 22 | nnred 9048 |
. . . . . . . 8
|
| 46 | 10 | adantr 276 |
. . . . . . . . . 10
|
| 47 | 46 | nn0red 9348 |
. . . . . . . . 9
|
| 48 | efcllemp.ak |
. . . . . . . . . 10
| |
| 49 | 48 | adantr 276 |
. . . . . . . . 9
|
| 50 | 47 | ltp1d 9002 |
. . . . . . . . 9
|
| 51 | 40, 47, 44, 49, 50 | lttrd 8197 |
. . . . . . . 8
|
| 52 | eluzp1p1 9673 |
. . . . . . . . . 10
| |
| 53 | 52 | adantl 277 |
. . . . . . . . 9
|
| 54 | eluzle 9659 |
. . . . . . . . 9
| |
| 55 | 53, 54 | syl 14 |
. . . . . . . 8
|
| 56 | 40, 44, 45, 51, 55 | ltletrd 8495 |
. . . . . . 7
|
| 57 | 18 | recnd 8100 |
. . . . . . . 8
|
| 58 | 2cn 9106 |
. . . . . . . 8
| |
| 59 | mulcom 8053 |
. . . . . . . 8
| |
| 60 | 57, 58, 59 | sylancl 413 |
. . . . . . 7
|
| 61 | 22 | nncnd 9049 |
. . . . . . . 8
|
| 62 | 61 | mulid2d 8090 |
. . . . . . 7
|
| 63 | 56, 60, 62 | 3brtr4d 4075 |
. . . . . 6
|
| 64 | 2rp 9779 |
. . . . . . . 8
| |
| 65 | 64 | a1i 9 |
. . . . . . 7
|
| 66 | 1red 8086 |
. . . . . . 7
| |
| 67 | 22 | nnrpd 9815 |
. . . . . . 7
|
| 68 | 18, 65, 66, 67 | lt2mul2divd 9886 |
. . . . . 6
|
| 69 | 63, 68 | mpbid 147 |
. . . . 5
|
| 70 | ltle 8159 |
. . . . . 6
| |
| 71 | 23, 3, 70 | sylancl 413 |
. . . . 5
|
| 72 | 69, 71 | mpd 13 |
. . . 4
|
| 73 | 23, 24, 27, 35, 72 | lemul2ad 9012 |
. . 3
|
| 74 | peano2nn0 9334 |
. . . . . . 7
| |
| 75 | 20, 74 | syl 14 |
. . . . . 6
|
| 76 | 12 | eftvalcn 11910 |
. . . . . 6
|
| 77 | 11, 75, 76 | syl2an2r 595 |
. . . . 5
|
| 78 | 77 | fveq2d 5579 |
. . . 4
|
| 79 | 17, 75 | absexpd 11445 |
. . . . . . 7
|
| 80 | 57, 20 | expp1d 10817 |
. . . . . . 7
|
| 81 | 79, 80 | eqtrd 2237 |
. . . . . 6
|
| 82 | 75 | faccld 10879 |
. . . . . . . . 9
|
| 83 | 82 | nnred 9048 |
. . . . . . . 8
|
| 84 | 82 | nnnn0d 9347 |
. . . . . . . . 9
|
| 85 | 84 | nn0ge0d 9350 |
. . . . . . . 8
|
| 86 | 83, 85 | absidd 11420 |
. . . . . . 7
|
| 87 | facp1 10873 |
. . . . . . . 8
| |
| 88 | 20, 87 | syl 14 |
. . . . . . 7
|
| 89 | 86, 88 | eqtrd 2237 |
. . . . . 6
|
| 90 | 81, 89 | oveq12d 5961 |
. . . . 5
|
| 91 | 17, 75 | expcld 10816 |
. . . . . 6
|
| 92 | 82 | nncnd 9049 |
. . . . . 6
|
| 93 | 82 | nnap0d 9081 |
. . . . . 6
|
| 94 | 91, 92, 93 | absdivapd 11448 |
. . . . 5
|
| 95 | 25 | recnd 8100 |
. . . . . 6
|
| 96 | 26 | nncnd 9049 |
. . . . . 6
|
| 97 | 26 | nnap0d 9081 |
. . . . . 6
|
| 98 | 22 | nnap0d 9081 |
. . . . . 6
|
| 99 | 95, 96, 57, 61, 97, 98 | divmuldivapd 8904 |
. . . . 5
|
| 100 | 90, 94, 99 | 3eqtr4d 2247 |
. . . 4
|
| 101 | 78, 100 | eqtrd 2237 |
. . 3
|
| 102 | halfcn 9250 |
. . . . 5
| |
| 103 | 11, 20, 15 | syl2an2r 595 |
. . . . . . 7
|
| 104 | 103 | abscld 11434 |
. . . . . 6
|
| 105 | 104 | recnd 8100 |
. . . . 5
|
| 106 | mulcom 8053 |
. . . . 5
| |
| 107 | 102, 105, 106 | sylancr 414 |
. . . 4
|
| 108 | 11, 20, 13 | syl2an2r 595 |
. . . . . . 7
|
| 109 | 108 | fveq2d 5579 |
. . . . . 6
|
| 110 | eftabs 11909 |
. . . . . . 7
| |
| 111 | 11, 20, 110 | syl2an2r 595 |
. . . . . 6
|
| 112 | 109, 111 | eqtrd 2237 |
. . . . 5
|
| 113 | 112 | oveq1d 5958 |
. . . 4
|
| 114 | 107, 113 | eqtrd 2237 |
. . 3
|
| 115 | 73, 101, 114 | 3brtr4d 4075 |
. 2
|
| 116 | 1, 2, 4, 6, 8, 10, 16, 115 | cvgratgt0 11786 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-frec 6476 df-1o 6501 df-oadd 6505 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-ico 10015 df-fz 10130 df-fzo 10264 df-seqfrec 10591 df-exp 10682 df-fac 10869 df-ihash 10919 df-cj 11095 df-re 11096 df-im 11097 df-rsqrt 11251 df-abs 11252 df-clim 11532 df-sumdc 11607 |
| This theorem is referenced by: efcllem 11912 |
| Copyright terms: Public domain | W3C validator |