ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efcllemp Unicode version

Theorem efcllemp 11401
Description: Lemma for efcl 11407. The series that defines the exponential function converges. The ratio test cvgratgt0 11334 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.)
Hypotheses
Ref Expression
efcllemp.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
efcllemp.a  |-  ( ph  ->  A  e.  CC )
efcllemp.k  |-  ( ph  ->  K  e.  NN )
efcllemp.ak  |-  ( ph  ->  ( 2  x.  ( abs `  A ) )  <  K )
Assertion
Ref Expression
efcllemp  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
dom 
~~>  )
Distinct variable group:    A, n
Allowed substitution hints:    ph( n)    F( n)    K( n)

Proof of Theorem efcllemp
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9384 . 2  |-  NN0  =  ( ZZ>= `  0 )
2 eqid 2140 . 2  |-  ( ZZ>= `  K )  =  (
ZZ>= `  K )
3 halfre 8957 . . 3  |-  ( 1  /  2 )  e.  RR
43a1i 9 . 2  |-  ( ph  ->  ( 1  /  2
)  e.  RR )
5 halflt1 8961 . . 3  |-  ( 1  /  2 )  <  1
65a1i 9 . 2  |-  ( ph  ->  ( 1  /  2
)  <  1 )
7 halfgt0 8959 . . 3  |-  0  <  ( 1  /  2
)
87a1i 9 . 2  |-  ( ph  ->  0  <  ( 1  /  2 ) )
9 efcllemp.k . . 3  |-  ( ph  ->  K  e.  NN )
109nnnn0d 9054 . 2  |-  ( ph  ->  K  e.  NN0 )
11 efcllemp.a . . 3  |-  ( ph  ->  A  e.  CC )
12 efcllemp.1 . . . . 5  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
1312eftvalcn 11400 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  =  ( ( A ^ k )  /  ( ! `  k ) ) )
14 eftcl 11397 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
1513, 14eqeltrd 2217 . . 3  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  e.  CC )
1611, 15sylan 281 . 2  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  CC )
1711adantr 274 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  A  e.  CC )
1817abscld 10985 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  A )  e.  RR )
19 eluznn0 9420 . . . . . . 7  |-  ( ( K  e.  NN0  /\  k  e.  ( ZZ>= `  K ) )  -> 
k  e.  NN0 )
2010, 19sylan 281 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  k  e.  NN0 )
21 nn0p1nn 9040 . . . . . 6  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
2220, 21syl 14 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  NN )
2318, 22nndivred 8794 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A )  / 
( k  +  1 ) )  e.  RR )
243a1i 9 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 1  /  2 )  e.  RR )
2518, 20reexpcld 10472 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A ) ^
k )  e.  RR )
2620faccld 10514 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  k )  e.  NN )
2725, 26nndivred 8794 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
( abs `  A
) ^ k )  /  ( ! `  k ) )  e.  RR )
2817, 20expcld 10455 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( A ^ k )  e.  CC )
2928absge0d 10988 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  0  <_  ( abs `  ( A ^ k ) ) )
3017, 20absexpd 10996 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( A ^ k
) )  =  ( ( abs `  A
) ^ k ) )
3129, 30breqtrd 3962 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  0  <_  ( ( abs `  A
) ^ k ) )
3226nnred 8757 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  k )  e.  RR )
3326nngt0d 8788 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  0  <  ( ! `  k ) )
34 divge0 8655 . . . . 5  |-  ( ( ( ( ( abs `  A ) ^ k
)  e.  RR  /\  0  <_  ( ( abs `  A ) ^ k
) )  /\  (
( ! `  k
)  e.  RR  /\  0  <  ( ! `  k ) ) )  ->  0  <_  (
( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
3525, 31, 32, 33, 34syl22anc 1218 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  0  <_  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
36 2re 8814 . . . . . . . . . 10  |-  2  e.  RR
37 abscl 10855 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
38 remulcl 7772 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  ( abs `  A )  e.  RR )  -> 
( 2  x.  ( abs `  A ) )  e.  RR )
3936, 37, 38sylancr 411 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
2  x.  ( abs `  A ) )  e.  RR )
4017, 39syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 2  x.  ( abs `  A
) )  e.  RR )
41 peano2nn0 9041 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  ( K  +  1 )  e. 
NN0 )
4210, 41syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( K  +  1 )  e.  NN0 )
4342nn0red 9055 . . . . . . . . 9  |-  ( ph  ->  ( K  +  1 )  e.  RR )
4443adantr 274 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( K  +  1 )  e.  RR )
4522nnred 8757 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  RR )
4610adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  K  e.  NN0 )
4746nn0red 9055 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  K  e.  RR )
48 efcllemp.ak . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  ( abs `  A ) )  <  K )
4948adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 2  x.  ( abs `  A
) )  <  K
)
5047ltp1d 8712 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  K  <  ( K  +  1 ) )
5140, 47, 44, 49, 50lttrd 7912 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 2  x.  ( abs `  A
) )  <  ( K  +  1 ) )
52 eluzp1p1 9375 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  K
)  ->  ( k  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
5352adantl 275 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) ) )
54 eluzle 9362 . . . . . . . . 9  |-  ( ( k  +  1 )  e.  ( ZZ>= `  ( K  +  1 ) )  ->  ( K  +  1 )  <_ 
( k  +  1 ) )
5553, 54syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( K  +  1 )  <_ 
( k  +  1 ) )
5640, 44, 45, 51, 55ltletrd 8209 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 2  x.  ( abs `  A
) )  <  (
k  +  1 ) )
5718recnd 7818 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  A )  e.  CC )
58 2cn 8815 . . . . . . . 8  |-  2  e.  CC
59 mulcom 7773 . . . . . . . 8  |-  ( ( ( abs `  A
)  e.  CC  /\  2  e.  CC )  ->  ( ( abs `  A
)  x.  2 )  =  ( 2  x.  ( abs `  A
) ) )
6057, 58, 59sylancl 410 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A )  x.  2 )  =  ( 2  x.  ( abs `  A ) ) )
6122nncnd 8758 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  CC )
6261mulid2d 7808 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( 1  x.  ( k  +  1 ) )  =  ( k  +  1 ) )
6356, 60, 623brtr4d 3968 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A )  x.  2 )  <  (
1  x.  ( k  +  1 ) ) )
64 2rp 9475 . . . . . . . 8  |-  2  e.  RR+
6564a1i 9 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  2  e.  RR+ )
66 1red 7805 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  1  e.  RR )
6722nnrpd 9511 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  RR+ )
6818, 65, 66, 67lt2mul2divd 9582 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
( abs `  A
)  x.  2 )  <  ( 1  x.  ( k  +  1 ) )  <->  ( ( abs `  A )  / 
( k  +  1 ) )  <  (
1  /  2 ) ) )
6963, 68mpbid 146 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A )  / 
( k  +  1 ) )  <  (
1  /  2 ) )
70 ltle 7875 . . . . . 6  |-  ( ( ( ( abs `  A
)  /  ( k  +  1 ) )  e.  RR  /\  (
1  /  2 )  e.  RR )  -> 
( ( ( abs `  A )  /  (
k  +  1 ) )  <  ( 1  /  2 )  -> 
( ( abs `  A
)  /  ( k  +  1 ) )  <_  ( 1  / 
2 ) ) )
7123, 3, 70sylancl 410 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
( abs `  A
)  /  ( k  +  1 ) )  <  ( 1  / 
2 )  ->  (
( abs `  A
)  /  ( k  +  1 ) )  <_  ( 1  / 
2 ) ) )
7269, 71mpd 13 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A )  / 
( k  +  1 ) )  <_  (
1  /  2 ) )
7323, 24, 27, 35, 72lemul2ad 8722 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
( ( abs `  A
) ^ k )  /  ( ! `  k ) )  x.  ( ( abs `  A
)  /  ( k  +  1 ) ) )  <_  ( (
( ( abs `  A
) ^ k )  /  ( ! `  k ) )  x.  ( 1  /  2
) ) )
74 peano2nn0 9041 . . . . . . 7  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
7520, 74syl 14 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e. 
NN0 )
7612eftvalcn 11400 . . . . . 6  |-  ( ( A  e.  CC  /\  ( k  +  1 )  e.  NN0 )  ->  ( F `  (
k  +  1 ) )  =  ( ( A ^ ( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) )
7711, 75, 76syl2an2r 585 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( F `  ( k  +  1 ) )  =  ( ( A ^ (
k  +  1 ) )  /  ( ! `
 ( k  +  1 ) ) ) )
7877fveq2d 5433 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  (
k  +  1 ) ) )  =  ( abs `  ( ( A ^ ( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) ) )
7917, 75absexpd 10996 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( abs `  A
) ^ ( k  +  1 ) ) )
8057, 20expp1d 10456 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A ) ^
( k  +  1 ) )  =  ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) ) )
8179, 80eqtrd 2173 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) ) )
8275faccld 10514 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) )  e.  NN )
8382nnred 8757 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) )  e.  RR )
8482nnnn0d 9054 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) )  e.  NN0 )
8584nn0ge0d 9057 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  0  <_  ( ! `  ( k  +  1 ) ) )
8683, 85absidd 10971 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( ! `  (
k  +  1 ) ) )  =  ( ! `  ( k  +  1 ) ) )
87 facp1 10508 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
8820, 87syl 14 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) )  =  ( ( ! `  k
)  x.  ( k  +  1 ) ) )
8986, 88eqtrd 2173 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( ! `  (
k  +  1 ) ) )  =  ( ( ! `  k
)  x.  ( k  +  1 ) ) )
9081, 89oveq12d 5800 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  ( A ^
( k  +  1 ) ) )  / 
( abs `  ( ! `  ( k  +  1 ) ) ) )  =  ( ( ( ( abs `  A ) ^ k
)  x.  ( abs `  A ) )  / 
( ( ! `  k )  x.  (
k  +  1 ) ) ) )
9117, 75expcld 10455 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( A ^ ( k  +  1 ) )  e.  CC )
9282nncnd 8758 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) )  e.  CC )
9382nnap0d 8790 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  ( k  +  1 ) ) #  0 )
9491, 92, 93absdivapd 10999 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( ( A ^
( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) )  =  ( ( abs `  ( A ^ ( k  +  1 ) ) )  /  ( abs `  ( ! `  ( k  +  1 ) ) ) ) )
9525recnd 7818 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  A ) ^
k )  e.  CC )
9626nncnd 8758 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  k )  e.  CC )
9726nnap0d 8790 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ! `  k ) #  0 )
9822nnap0d 8790 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 ) #  0 )
9995, 96, 57, 61, 97, 98divmuldivapd 8616 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
( ( abs `  A
) ^ k )  /  ( ! `  k ) )  x.  ( ( abs `  A
)  /  ( k  +  1 ) ) )  =  ( ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) )  /  (
( ! `  k
)  x.  ( k  +  1 ) ) ) )
10090, 94, 993eqtr4d 2183 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( ( A ^
( k  +  1 ) )  /  ( ! `  ( k  +  1 ) ) ) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( ( abs `  A )  /  (
k  +  1 ) ) ) )
10178, 100eqtrd 2173 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  (
k  +  1 ) ) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( ( abs `  A )  /  (
k  +  1 ) ) ) )
102 halfcn 8958 . . . . 5  |-  ( 1  /  2 )  e.  CC
10311, 20, 15syl2an2r 585 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( F `  k )  e.  CC )
104103abscld 10985 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  k
) )  e.  RR )
105104recnd 7818 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  k
) )  e.  CC )
106 mulcom 7773 . . . . 5  |-  ( ( ( 1  /  2
)  e.  CC  /\  ( abs `  ( F `
 k ) )  e.  CC )  -> 
( ( 1  / 
2 )  x.  ( abs `  ( F `  k ) ) )  =  ( ( abs `  ( F `  k
) )  x.  (
1  /  2 ) ) )
107102, 105, 106sylancr 411 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
1  /  2 )  x.  ( abs `  ( F `  k )
) )  =  ( ( abs `  ( F `  k )
)  x.  ( 1  /  2 ) ) )
10811, 20, 13syl2an2r 585 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( F `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
109108fveq2d 5433 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  k
) )  =  ( abs `  ( ( A ^ k )  /  ( ! `  k ) ) ) )
110 eftabs 11399 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  (
( A ^ k
)  /  ( ! `
 k ) ) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
11111, 20, 110syl2an2r 585 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( ( A ^
k )  /  ( ! `  k )
) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
112109, 111eqtrd 2173 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  k
) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
113112oveq1d 5797 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( ( abs `  ( F `  k ) )  x.  ( 1  /  2
) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( 1  / 
2 ) ) )
114107, 113eqtrd 2173 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (
1  /  2 )  x.  ( abs `  ( F `  k )
) )  =  ( ( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  x.  ( 1  / 
2 ) ) )
11573, 101, 1143brtr4d 3968 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  (
( 1  /  2
)  x.  ( abs `  ( F `  k
) ) ) )
1161, 2, 4, 6, 8, 10, 16, 115cvgratgt0 11334 1  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
dom 
~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   class class class wbr 3937    |-> cmpt 3997   dom cdm 4547   ` cfv 5131  (class class class)co 5782   CCcc 7642   RRcr 7643   0cc0 7644   1c1 7645    + caddc 7647    x. cmul 7649    < clt 7824    <_ cle 7825    / cdiv 8456   NNcn 8744   2c2 8795   NN0cn0 9001   ZZ>=cuz 9350   RR+crp 9470    seqcseq 10249   ^cexp 10323   !cfa 10503   abscabs 10801    ~~> cli 11079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-ico 9707  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  efcllem  11402
  Copyright terms: Public domain W3C validator