Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > efcllemp | Unicode version |
Description: Lemma for efcl 11614. The series that defines the exponential function converges. The ratio test cvgratgt0 11483 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.) |
Ref | Expression |
---|---|
efcllemp.1 | |
efcllemp.a | |
efcllemp.k | |
efcllemp.ak |
Ref | Expression |
---|---|
efcllemp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 9508 | . 2 | |
2 | eqid 2170 | . 2 | |
3 | halfre 9078 | . . 3 | |
4 | 3 | a1i 9 | . 2 |
5 | halflt1 9082 | . . 3 | |
6 | 5 | a1i 9 | . 2 |
7 | halfgt0 9080 | . . 3 | |
8 | 7 | a1i 9 | . 2 |
9 | efcllemp.k | . . 3 | |
10 | 9 | nnnn0d 9175 | . 2 |
11 | efcllemp.a | . . 3 | |
12 | efcllemp.1 | . . . . 5 | |
13 | 12 | eftvalcn 11607 | . . . 4 |
14 | eftcl 11604 | . . . 4 | |
15 | 13, 14 | eqeltrd 2247 | . . 3 |
16 | 11, 15 | sylan 281 | . 2 |
17 | 11 | adantr 274 | . . . . . 6 |
18 | 17 | abscld 11132 | . . . . 5 |
19 | eluznn0 9545 | . . . . . . 7 | |
20 | 10, 19 | sylan 281 | . . . . . 6 |
21 | nn0p1nn 9161 | . . . . . 6 | |
22 | 20, 21 | syl 14 | . . . . 5 |
23 | 18, 22 | nndivred 8915 | . . . 4 |
24 | 3 | a1i 9 | . . . 4 |
25 | 18, 20 | reexpcld 10613 | . . . . 5 |
26 | 20 | faccld 10657 | . . . . 5 |
27 | 25, 26 | nndivred 8915 | . . . 4 |
28 | 17, 20 | expcld 10596 | . . . . . . 7 |
29 | 28 | absge0d 11135 | . . . . . 6 |
30 | 17, 20 | absexpd 11143 | . . . . . 6 |
31 | 29, 30 | breqtrd 4013 | . . . . 5 |
32 | 26 | nnred 8878 | . . . . 5 |
33 | 26 | nngt0d 8909 | . . . . 5 |
34 | divge0 8776 | . . . . 5 | |
35 | 25, 31, 32, 33, 34 | syl22anc 1234 | . . . 4 |
36 | 2re 8935 | . . . . . . . . . 10 | |
37 | abscl 11002 | . . . . . . . . . 10 | |
38 | remulcl 7889 | . . . . . . . . . 10 | |
39 | 36, 37, 38 | sylancr 412 | . . . . . . . . 9 |
40 | 17, 39 | syl 14 | . . . . . . . 8 |
41 | peano2nn0 9162 | . . . . . . . . . . 11 | |
42 | 10, 41 | syl 14 | . . . . . . . . . 10 |
43 | 42 | nn0red 9176 | . . . . . . . . 9 |
44 | 43 | adantr 274 | . . . . . . . 8 |
45 | 22 | nnred 8878 | . . . . . . . 8 |
46 | 10 | adantr 274 | . . . . . . . . . 10 |
47 | 46 | nn0red 9176 | . . . . . . . . 9 |
48 | efcllemp.ak | . . . . . . . . . 10 | |
49 | 48 | adantr 274 | . . . . . . . . 9 |
50 | 47 | ltp1d 8833 | . . . . . . . . 9 |
51 | 40, 47, 44, 49, 50 | lttrd 8032 | . . . . . . . 8 |
52 | eluzp1p1 9499 | . . . . . . . . . 10 | |
53 | 52 | adantl 275 | . . . . . . . . 9 |
54 | eluzle 9486 | . . . . . . . . 9 | |
55 | 53, 54 | syl 14 | . . . . . . . 8 |
56 | 40, 44, 45, 51, 55 | ltletrd 8329 | . . . . . . 7 |
57 | 18 | recnd 7935 | . . . . . . . 8 |
58 | 2cn 8936 | . . . . . . . 8 | |
59 | mulcom 7890 | . . . . . . . 8 | |
60 | 57, 58, 59 | sylancl 411 | . . . . . . 7 |
61 | 22 | nncnd 8879 | . . . . . . . 8 |
62 | 61 | mulid2d 7925 | . . . . . . 7 |
63 | 56, 60, 62 | 3brtr4d 4019 | . . . . . 6 |
64 | 2rp 9602 | . . . . . . . 8 | |
65 | 64 | a1i 9 | . . . . . . 7 |
66 | 1red 7922 | . . . . . . 7 | |
67 | 22 | nnrpd 9638 | . . . . . . 7 |
68 | 18, 65, 66, 67 | lt2mul2divd 9709 | . . . . . 6 |
69 | 63, 68 | mpbid 146 | . . . . 5 |
70 | ltle 7994 | . . . . . 6 | |
71 | 23, 3, 70 | sylancl 411 | . . . . 5 |
72 | 69, 71 | mpd 13 | . . . 4 |
73 | 23, 24, 27, 35, 72 | lemul2ad 8843 | . . 3 |
74 | peano2nn0 9162 | . . . . . . 7 | |
75 | 20, 74 | syl 14 | . . . . . 6 |
76 | 12 | eftvalcn 11607 | . . . . . 6 |
77 | 11, 75, 76 | syl2an2r 590 | . . . . 5 |
78 | 77 | fveq2d 5498 | . . . 4 |
79 | 17, 75 | absexpd 11143 | . . . . . . 7 |
80 | 57, 20 | expp1d 10597 | . . . . . . 7 |
81 | 79, 80 | eqtrd 2203 | . . . . . 6 |
82 | 75 | faccld 10657 | . . . . . . . . 9 |
83 | 82 | nnred 8878 | . . . . . . . 8 |
84 | 82 | nnnn0d 9175 | . . . . . . . . 9 |
85 | 84 | nn0ge0d 9178 | . . . . . . . 8 |
86 | 83, 85 | absidd 11118 | . . . . . . 7 |
87 | facp1 10651 | . . . . . . . 8 | |
88 | 20, 87 | syl 14 | . . . . . . 7 |
89 | 86, 88 | eqtrd 2203 | . . . . . 6 |
90 | 81, 89 | oveq12d 5868 | . . . . 5 |
91 | 17, 75 | expcld 10596 | . . . . . 6 |
92 | 82 | nncnd 8879 | . . . . . 6 |
93 | 82 | nnap0d 8911 | . . . . . 6 # |
94 | 91, 92, 93 | absdivapd 11146 | . . . . 5 |
95 | 25 | recnd 7935 | . . . . . 6 |
96 | 26 | nncnd 8879 | . . . . . 6 |
97 | 26 | nnap0d 8911 | . . . . . 6 # |
98 | 22 | nnap0d 8911 | . . . . . 6 # |
99 | 95, 96, 57, 61, 97, 98 | divmuldivapd 8736 | . . . . 5 |
100 | 90, 94, 99 | 3eqtr4d 2213 | . . . 4 |
101 | 78, 100 | eqtrd 2203 | . . 3 |
102 | halfcn 9079 | . . . . 5 | |
103 | 11, 20, 15 | syl2an2r 590 | . . . . . . 7 |
104 | 103 | abscld 11132 | . . . . . 6 |
105 | 104 | recnd 7935 | . . . . 5 |
106 | mulcom 7890 | . . . . 5 | |
107 | 102, 105, 106 | sylancr 412 | . . . 4 |
108 | 11, 20, 13 | syl2an2r 590 | . . . . . . 7 |
109 | 108 | fveq2d 5498 | . . . . . 6 |
110 | eftabs 11606 | . . . . . . 7 | |
111 | 11, 20, 110 | syl2an2r 590 | . . . . . 6 |
112 | 109, 111 | eqtrd 2203 | . . . . 5 |
113 | 112 | oveq1d 5865 | . . . 4 |
114 | 107, 113 | eqtrd 2203 | . . 3 |
115 | 73, 101, 114 | 3brtr4d 4019 | . 2 |
116 | 1, 2, 4, 6, 8, 10, 16, 115 | cvgratgt0 11483 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 class class class wbr 3987 cmpt 4048 cdm 4609 cfv 5196 (class class class)co 5850 cc 7759 cr 7760 cc0 7761 c1 7762 caddc 7764 cmul 7766 clt 7941 cle 7942 cdiv 8576 cn 8865 c2 8916 cn0 9122 cuz 9474 crp 9597 cseq 10388 cexp 10462 cfa 10646 cabs 10948 cli 11228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 ax-arch 7880 ax-caucvg 7881 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-isom 5205 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-irdg 6346 df-frec 6367 df-1o 6392 df-oadd 6396 df-er 6509 df-en 6715 df-dom 6716 df-fin 6717 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-2 8924 df-3 8925 df-4 8926 df-n0 9123 df-z 9200 df-uz 9475 df-q 9566 df-rp 9598 df-ico 9838 df-fz 9953 df-fzo 10086 df-seqfrec 10389 df-exp 10463 df-fac 10647 df-ihash 10697 df-cj 10793 df-re 10794 df-im 10795 df-rsqrt 10949 df-abs 10950 df-clim 11229 df-sumdc 11304 |
This theorem is referenced by: efcllem 11609 |
Copyright terms: Public domain | W3C validator |