ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringacl Unicode version

Theorem ringacl 13907
Description: Closure of the addition operation of a ring. (Contributed by Mario Carneiro, 14-Jan-2014.)
Hypotheses
Ref Expression
ringacl.b  |-  B  =  ( Base `  R
)
ringacl.p  |-  .+  =  ( +g  `  R )
Assertion
Ref Expression
ringacl  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  e.  B )

Proof of Theorem ringacl
StepHypRef Expression
1 ringgrp 13878 . 2  |-  ( R  e.  Ring  ->  R  e. 
Grp )
2 ringacl.b . . 3  |-  B  =  ( Base `  R
)
3 ringacl.p . . 3  |-  .+  =  ( +g  `  R )
42, 3grpcl 13455 . 2  |-  ( ( R  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  B )
51, 4syl3an1 1283 1  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   Grpcgrp 13447   Ringcrg 13873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ov 5970  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-mulr 13038  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-ring 13875
This theorem is referenced by:  ringcom  13908  ringlghm  13938  ringrghm  13939  imasring  13941  qusring2  13943  opprring  13956  mulgass3  13962  lmodprop2d  14225
  Copyright terms: Public domain W3C validator