ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringlghm Unicode version

Theorem ringlghm 13693
Description: Left-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
ringlghm.b  |-  B  =  ( Base `  R
)
ringlghm.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
ringlghm  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
x  e.  B  |->  ( X  .x.  x ) )  e.  ( R 
GrpHom  R ) )
Distinct variable groups:    x, B    x, R    x,  .x.    x, X

Proof of Theorem ringlghm
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringlghm.b . 2  |-  B  =  ( Base `  R
)
2 eqid 2196 . 2  |-  ( +g  `  R )  =  ( +g  `  R )
3 ringgrp 13633 . . 3  |-  ( R  e.  Ring  ->  R  e. 
Grp )
43adantr 276 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  R  e.  Grp )
5 ringlghm.t . . . . 5  |-  .x.  =  ( .r `  R )
61, 5ringcl 13645 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  x  e.  B )  ->  ( X  .x.  x )  e.  B )
763expa 1205 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( X  .x.  x )  e.  B
)
87fmpttd 5720 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
x  e.  B  |->  ( X  .x.  x ) ) : B --> B )
9 3anass 984 . . . . 5  |-  ( ( X  e.  B  /\  y  e.  B  /\  z  e.  B )  <->  ( X  e.  B  /\  ( y  e.  B  /\  z  e.  B
) ) )
101, 2, 5ringdi 13650 . . . . 5  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( X  .x.  ( y ( +g  `  R ) z ) )  =  ( ( X  .x.  y ) ( +g  `  R
) ( X  .x.  z ) ) )
119, 10sylan2br 288 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  ( y  e.  B  /\  z  e.  B
) ) )  -> 
( X  .x.  (
y ( +g  `  R
) z ) )  =  ( ( X 
.x.  y ) ( +g  `  R ) ( X  .x.  z
) ) )
1211anassrs 400 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( X  .x.  (
y ( +g  `  R
) z ) )  =  ( ( X 
.x.  y ) ( +g  `  R ) ( X  .x.  z
) ) )
13 eqid 2196 . . . 4  |-  ( x  e.  B  |->  ( X 
.x.  x ) )  =  ( x  e.  B  |->  ( X  .x.  x ) )
14 oveq2 5933 . . . 4  |-  ( x  =  ( y ( +g  `  R ) z )  ->  ( X  .x.  x )  =  ( X  .x.  (
y ( +g  `  R
) z ) ) )
151, 2ringacl 13662 . . . . . 6  |-  ( ( R  e.  Ring  /\  y  e.  B  /\  z  e.  B )  ->  (
y ( +g  `  R
) z )  e.  B )
16153expb 1206 . . . . 5  |-  ( ( R  e.  Ring  /\  (
y  e.  B  /\  z  e.  B )
)  ->  ( y
( +g  `  R ) z )  e.  B
)
1716adantlr 477 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( y ( +g  `  R ) z )  e.  B )
18 simpll 527 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  ->  R  e.  Ring )
19 simplr 528 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  ->  X  e.  B )
201, 5ringcl 13645 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  (
y ( +g  `  R
) z )  e.  B )  ->  ( X  .x.  ( y ( +g  `  R ) z ) )  e.  B )
2118, 19, 17, 20syl3anc 1249 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( X  .x.  (
y ( +g  `  R
) z ) )  e.  B )
2213, 14, 17, 21fvmptd3 5658 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( x  e.  B  |->  ( X  .x.  x ) ) `  ( y ( +g  `  R ) z ) )  =  ( X 
.x.  ( y ( +g  `  R ) z ) ) )
23 oveq2 5933 . . . . 5  |-  ( x  =  y  ->  ( X  .x.  x )  =  ( X  .x.  y
) )
24 simprl 529 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
y  e.  B )
251, 5ringcl 13645 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  y  e.  B )  ->  ( X  .x.  y )  e.  B )
2618, 19, 24, 25syl3anc 1249 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( X  .x.  y
)  e.  B )
2713, 23, 24, 26fvmptd3 5658 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( x  e.  B  |->  ( X  .x.  x ) ) `  y )  =  ( X  .x.  y ) )
28 oveq2 5933 . . . . 5  |-  ( x  =  z  ->  ( X  .x.  x )  =  ( X  .x.  z
) )
29 simprr 531 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
z  e.  B )
301, 5ringcl 13645 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  z  e.  B )  ->  ( X  .x.  z )  e.  B )
3118, 19, 29, 30syl3anc 1249 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( X  .x.  z
)  e.  B )
3213, 28, 29, 31fvmptd3 5658 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( x  e.  B  |->  ( X  .x.  x ) ) `  z )  =  ( X  .x.  z ) )
3327, 32oveq12d 5943 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 y ) ( +g  `  R ) ( ( x  e.  B  |->  ( X  .x.  x ) ) `  z ) )  =  ( ( X  .x.  y ) ( +g  `  R ) ( X 
.x.  z ) ) )
3412, 22, 333eqtr4d 2239 . 2  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( x  e.  B  |->  ( X  .x.  x ) ) `  ( y ( +g  `  R ) z ) )  =  ( ( ( x  e.  B  |->  ( X  .x.  x
) ) `  y
) ( +g  `  R
) ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 z ) ) )
351, 1, 2, 2, 4, 4, 8, 34isghmd 13458 1  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
x  e.  B  |->  ( X  .x.  x ) )  e.  ( R 
GrpHom  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167    |-> cmpt 4095   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780   .rcmulr 12781   Grpcgrp 13202    GrpHom cghm 13446   Ringcrg 13628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-ghm 13447  df-mgp 13553  df-ring 13630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator