ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringlghm Unicode version

Theorem ringlghm 13867
Description: Left-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
ringlghm.b  |-  B  =  ( Base `  R
)
ringlghm.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
ringlghm  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
x  e.  B  |->  ( X  .x.  x ) )  e.  ( R 
GrpHom  R ) )
Distinct variable groups:    x, B    x, R    x,  .x.    x, X

Proof of Theorem ringlghm
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringlghm.b . 2  |-  B  =  ( Base `  R
)
2 eqid 2206 . 2  |-  ( +g  `  R )  =  ( +g  `  R )
3 ringgrp 13807 . . 3  |-  ( R  e.  Ring  ->  R  e. 
Grp )
43adantr 276 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  R  e.  Grp )
5 ringlghm.t . . . . 5  |-  .x.  =  ( .r `  R )
61, 5ringcl 13819 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  x  e.  B )  ->  ( X  .x.  x )  e.  B )
763expa 1206 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( X  .x.  x )  e.  B
)
87fmpttd 5742 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
x  e.  B  |->  ( X  .x.  x ) ) : B --> B )
9 3anass 985 . . . . 5  |-  ( ( X  e.  B  /\  y  e.  B  /\  z  e.  B )  <->  ( X  e.  B  /\  ( y  e.  B  /\  z  e.  B
) ) )
101, 2, 5ringdi 13824 . . . . 5  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( X  .x.  ( y ( +g  `  R ) z ) )  =  ( ( X  .x.  y ) ( +g  `  R
) ( X  .x.  z ) ) )
119, 10sylan2br 288 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  ( y  e.  B  /\  z  e.  B
) ) )  -> 
( X  .x.  (
y ( +g  `  R
) z ) )  =  ( ( X 
.x.  y ) ( +g  `  R ) ( X  .x.  z
) ) )
1211anassrs 400 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( X  .x.  (
y ( +g  `  R
) z ) )  =  ( ( X 
.x.  y ) ( +g  `  R ) ( X  .x.  z
) ) )
13 eqid 2206 . . . 4  |-  ( x  e.  B  |->  ( X 
.x.  x ) )  =  ( x  e.  B  |->  ( X  .x.  x ) )
14 oveq2 5959 . . . 4  |-  ( x  =  ( y ( +g  `  R ) z )  ->  ( X  .x.  x )  =  ( X  .x.  (
y ( +g  `  R
) z ) ) )
151, 2ringacl 13836 . . . . . 6  |-  ( ( R  e.  Ring  /\  y  e.  B  /\  z  e.  B )  ->  (
y ( +g  `  R
) z )  e.  B )
16153expb 1207 . . . . 5  |-  ( ( R  e.  Ring  /\  (
y  e.  B  /\  z  e.  B )
)  ->  ( y
( +g  `  R ) z )  e.  B
)
1716adantlr 477 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( y ( +g  `  R ) z )  e.  B )
18 simpll 527 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  ->  R  e.  Ring )
19 simplr 528 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  ->  X  e.  B )
201, 5ringcl 13819 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  (
y ( +g  `  R
) z )  e.  B )  ->  ( X  .x.  ( y ( +g  `  R ) z ) )  e.  B )
2118, 19, 17, 20syl3anc 1250 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( X  .x.  (
y ( +g  `  R
) z ) )  e.  B )
2213, 14, 17, 21fvmptd3 5680 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( x  e.  B  |->  ( X  .x.  x ) ) `  ( y ( +g  `  R ) z ) )  =  ( X 
.x.  ( y ( +g  `  R ) z ) ) )
23 oveq2 5959 . . . . 5  |-  ( x  =  y  ->  ( X  .x.  x )  =  ( X  .x.  y
) )
24 simprl 529 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
y  e.  B )
251, 5ringcl 13819 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  y  e.  B )  ->  ( X  .x.  y )  e.  B )
2618, 19, 24, 25syl3anc 1250 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( X  .x.  y
)  e.  B )
2713, 23, 24, 26fvmptd3 5680 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( x  e.  B  |->  ( X  .x.  x ) ) `  y )  =  ( X  .x.  y ) )
28 oveq2 5959 . . . . 5  |-  ( x  =  z  ->  ( X  .x.  x )  =  ( X  .x.  z
) )
29 simprr 531 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
z  e.  B )
301, 5ringcl 13819 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  z  e.  B )  ->  ( X  .x.  z )  e.  B )
3118, 19, 29, 30syl3anc 1250 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( X  .x.  z
)  e.  B )
3213, 28, 29, 31fvmptd3 5680 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( x  e.  B  |->  ( X  .x.  x ) ) `  z )  =  ( X  .x.  z ) )
3327, 32oveq12d 5969 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 y ) ( +g  `  R ) ( ( x  e.  B  |->  ( X  .x.  x ) ) `  z ) )  =  ( ( X  .x.  y ) ( +g  `  R ) ( X 
.x.  z ) ) )
3412, 22, 333eqtr4d 2249 . 2  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( x  e.  B  |->  ( X  .x.  x ) ) `  ( y ( +g  `  R ) z ) )  =  ( ( ( x  e.  B  |->  ( X  .x.  x
) ) `  y
) ( +g  `  R
) ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 z ) ) )
351, 1, 2, 2, 4, 4, 8, 34isghmd 13632 1  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
x  e.  B  |->  ( X  .x.  x ) )  e.  ( R 
GrpHom  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177    |-> cmpt 4109   ` cfv 5276  (class class class)co 5951   Basecbs 12876   +g cplusg 12953   .rcmulr 12954   Grpcgrp 13376    GrpHom cghm 13620   Ringcrg 13802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-plusg 12966  df-mulr 12967  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-ghm 13621  df-mgp 13727  df-ring 13804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator