ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringlghm Unicode version

Theorem ringlghm 13560
Description: Left-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
ringlghm.b  |-  B  =  ( Base `  R
)
ringlghm.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
ringlghm  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
x  e.  B  |->  ( X  .x.  x ) )  e.  ( R 
GrpHom  R ) )
Distinct variable groups:    x, B    x, R    x,  .x.    x, X

Proof of Theorem ringlghm
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringlghm.b . 2  |-  B  =  ( Base `  R
)
2 eqid 2193 . 2  |-  ( +g  `  R )  =  ( +g  `  R )
3 ringgrp 13500 . . 3  |-  ( R  e.  Ring  ->  R  e. 
Grp )
43adantr 276 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  R  e.  Grp )
5 ringlghm.t . . . . 5  |-  .x.  =  ( .r `  R )
61, 5ringcl 13512 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  x  e.  B )  ->  ( X  .x.  x )  e.  B )
763expa 1205 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( X  .x.  x )  e.  B
)
87fmpttd 5714 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
x  e.  B  |->  ( X  .x.  x ) ) : B --> B )
9 3anass 984 . . . . 5  |-  ( ( X  e.  B  /\  y  e.  B  /\  z  e.  B )  <->  ( X  e.  B  /\  ( y  e.  B  /\  z  e.  B
) ) )
101, 2, 5ringdi 13517 . . . . 5  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( X  .x.  ( y ( +g  `  R ) z ) )  =  ( ( X  .x.  y ) ( +g  `  R
) ( X  .x.  z ) ) )
119, 10sylan2br 288 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  ( y  e.  B  /\  z  e.  B
) ) )  -> 
( X  .x.  (
y ( +g  `  R
) z ) )  =  ( ( X 
.x.  y ) ( +g  `  R ) ( X  .x.  z
) ) )
1211anassrs 400 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( X  .x.  (
y ( +g  `  R
) z ) )  =  ( ( X 
.x.  y ) ( +g  `  R ) ( X  .x.  z
) ) )
13 eqid 2193 . . . 4  |-  ( x  e.  B  |->  ( X 
.x.  x ) )  =  ( x  e.  B  |->  ( X  .x.  x ) )
14 oveq2 5927 . . . 4  |-  ( x  =  ( y ( +g  `  R ) z )  ->  ( X  .x.  x )  =  ( X  .x.  (
y ( +g  `  R
) z ) ) )
151, 2ringacl 13529 . . . . . 6  |-  ( ( R  e.  Ring  /\  y  e.  B  /\  z  e.  B )  ->  (
y ( +g  `  R
) z )  e.  B )
16153expb 1206 . . . . 5  |-  ( ( R  e.  Ring  /\  (
y  e.  B  /\  z  e.  B )
)  ->  ( y
( +g  `  R ) z )  e.  B
)
1716adantlr 477 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( y ( +g  `  R ) z )  e.  B )
18 simpll 527 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  ->  R  e.  Ring )
19 simplr 528 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  ->  X  e.  B )
201, 5ringcl 13512 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  (
y ( +g  `  R
) z )  e.  B )  ->  ( X  .x.  ( y ( +g  `  R ) z ) )  e.  B )
2118, 19, 17, 20syl3anc 1249 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( X  .x.  (
y ( +g  `  R
) z ) )  e.  B )
2213, 14, 17, 21fvmptd3 5652 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( x  e.  B  |->  ( X  .x.  x ) ) `  ( y ( +g  `  R ) z ) )  =  ( X 
.x.  ( y ( +g  `  R ) z ) ) )
23 oveq2 5927 . . . . 5  |-  ( x  =  y  ->  ( X  .x.  x )  =  ( X  .x.  y
) )
24 simprl 529 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
y  e.  B )
251, 5ringcl 13512 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  y  e.  B )  ->  ( X  .x.  y )  e.  B )
2618, 19, 24, 25syl3anc 1249 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( X  .x.  y
)  e.  B )
2713, 23, 24, 26fvmptd3 5652 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( x  e.  B  |->  ( X  .x.  x ) ) `  y )  =  ( X  .x.  y ) )
28 oveq2 5927 . . . . 5  |-  ( x  =  z  ->  ( X  .x.  x )  =  ( X  .x.  z
) )
29 simprr 531 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
z  e.  B )
301, 5ringcl 13512 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  z  e.  B )  ->  ( X  .x.  z )  e.  B )
3118, 19, 29, 30syl3anc 1249 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( X  .x.  z
)  e.  B )
3213, 28, 29, 31fvmptd3 5652 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( x  e.  B  |->  ( X  .x.  x ) ) `  z )  =  ( X  .x.  z ) )
3327, 32oveq12d 5937 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 y ) ( +g  `  R ) ( ( x  e.  B  |->  ( X  .x.  x ) ) `  z ) )  =  ( ( X  .x.  y ) ( +g  `  R ) ( X 
.x.  z ) ) )
3412, 22, 333eqtr4d 2236 . 2  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( x  e.  B  |->  ( X  .x.  x ) ) `  ( y ( +g  `  R ) z ) )  =  ( ( ( x  e.  B  |->  ( X  .x.  x
) ) `  y
) ( +g  `  R
) ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 z ) ) )
351, 1, 2, 2, 4, 4, 8, 34isghmd 13325 1  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
x  e.  B  |->  ( X  .x.  x ) )  e.  ( R 
GrpHom  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164    |-> cmpt 4091   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   .rcmulr 12699   Grpcgrp 13075    GrpHom cghm 13313   Ringcrg 13495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-ghm 13314  df-mgp 13420  df-ring 13497
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator