ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringlghm Unicode version

Theorem ringlghm 14010
Description: Left-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
ringlghm.b  |-  B  =  ( Base `  R
)
ringlghm.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
ringlghm  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
x  e.  B  |->  ( X  .x.  x ) )  e.  ( R 
GrpHom  R ) )
Distinct variable groups:    x, B    x, R    x,  .x.    x, X

Proof of Theorem ringlghm
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringlghm.b . 2  |-  B  =  ( Base `  R
)
2 eqid 2229 . 2  |-  ( +g  `  R )  =  ( +g  `  R )
3 ringgrp 13950 . . 3  |-  ( R  e.  Ring  ->  R  e. 
Grp )
43adantr 276 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  R  e.  Grp )
5 ringlghm.t . . . . 5  |-  .x.  =  ( .r `  R )
61, 5ringcl 13962 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  x  e.  B )  ->  ( X  .x.  x )  e.  B )
763expa 1227 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( X  .x.  x )  e.  B
)
87fmpttd 5783 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
x  e.  B  |->  ( X  .x.  x ) ) : B --> B )
9 3anass 1006 . . . . 5  |-  ( ( X  e.  B  /\  y  e.  B  /\  z  e.  B )  <->  ( X  e.  B  /\  ( y  e.  B  /\  z  e.  B
) ) )
101, 2, 5ringdi 13967 . . . . 5  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( X  .x.  ( y ( +g  `  R ) z ) )  =  ( ( X  .x.  y ) ( +g  `  R
) ( X  .x.  z ) ) )
119, 10sylan2br 288 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  ( y  e.  B  /\  z  e.  B
) ) )  -> 
( X  .x.  (
y ( +g  `  R
) z ) )  =  ( ( X 
.x.  y ) ( +g  `  R ) ( X  .x.  z
) ) )
1211anassrs 400 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( X  .x.  (
y ( +g  `  R
) z ) )  =  ( ( X 
.x.  y ) ( +g  `  R ) ( X  .x.  z
) ) )
13 eqid 2229 . . . 4  |-  ( x  e.  B  |->  ( X 
.x.  x ) )  =  ( x  e.  B  |->  ( X  .x.  x ) )
14 oveq2 6002 . . . 4  |-  ( x  =  ( y ( +g  `  R ) z )  ->  ( X  .x.  x )  =  ( X  .x.  (
y ( +g  `  R
) z ) ) )
151, 2ringacl 13979 . . . . . 6  |-  ( ( R  e.  Ring  /\  y  e.  B  /\  z  e.  B )  ->  (
y ( +g  `  R
) z )  e.  B )
16153expb 1228 . . . . 5  |-  ( ( R  e.  Ring  /\  (
y  e.  B  /\  z  e.  B )
)  ->  ( y
( +g  `  R ) z )  e.  B
)
1716adantlr 477 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( y ( +g  `  R ) z )  e.  B )
18 simpll 527 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  ->  R  e.  Ring )
19 simplr 528 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  ->  X  e.  B )
201, 5ringcl 13962 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  (
y ( +g  `  R
) z )  e.  B )  ->  ( X  .x.  ( y ( +g  `  R ) z ) )  e.  B )
2118, 19, 17, 20syl3anc 1271 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( X  .x.  (
y ( +g  `  R
) z ) )  e.  B )
2213, 14, 17, 21fvmptd3 5721 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( x  e.  B  |->  ( X  .x.  x ) ) `  ( y ( +g  `  R ) z ) )  =  ( X 
.x.  ( y ( +g  `  R ) z ) ) )
23 oveq2 6002 . . . . 5  |-  ( x  =  y  ->  ( X  .x.  x )  =  ( X  .x.  y
) )
24 simprl 529 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
y  e.  B )
251, 5ringcl 13962 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  y  e.  B )  ->  ( X  .x.  y )  e.  B )
2618, 19, 24, 25syl3anc 1271 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( X  .x.  y
)  e.  B )
2713, 23, 24, 26fvmptd3 5721 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( x  e.  B  |->  ( X  .x.  x ) ) `  y )  =  ( X  .x.  y ) )
28 oveq2 6002 . . . . 5  |-  ( x  =  z  ->  ( X  .x.  x )  =  ( X  .x.  z
) )
29 simprr 531 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
z  e.  B )
301, 5ringcl 13962 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  z  e.  B )  ->  ( X  .x.  z )  e.  B )
3118, 19, 29, 30syl3anc 1271 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( X  .x.  z
)  e.  B )
3213, 28, 29, 31fvmptd3 5721 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( x  e.  B  |->  ( X  .x.  x ) ) `  z )  =  ( X  .x.  z ) )
3327, 32oveq12d 6012 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 y ) ( +g  `  R ) ( ( x  e.  B  |->  ( X  .x.  x ) ) `  z ) )  =  ( ( X  .x.  y ) ( +g  `  R ) ( X 
.x.  z ) ) )
3412, 22, 333eqtr4d 2272 . 2  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( x  e.  B  |->  ( X  .x.  x ) ) `  ( y ( +g  `  R ) z ) )  =  ( ( ( x  e.  B  |->  ( X  .x.  x
) ) `  y
) ( +g  `  R
) ( ( x  e.  B  |->  ( X 
.x.  x ) ) `
 z ) ) )
351, 1, 2, 2, 4, 4, 8, 34isghmd 13775 1  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
x  e.  B  |->  ( X  .x.  x ) )  e.  ( R 
GrpHom  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200    |-> cmpt 4144   ` cfv 5314  (class class class)co 5994   Basecbs 13018   +g cplusg 13096   .rcmulr 13097   Grpcgrp 13519    GrpHom cghm 13763   Ringcrg 13945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-pre-ltirr 8099  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-pnf 8171  df-mnf 8172  df-ltxr 8174  df-inn 9099  df-2 9157  df-3 9158  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-plusg 13109  df-mulr 13110  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-grp 13522  df-ghm 13764  df-mgp 13870  df-ring 13947
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator