| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpcl | Unicode version | ||
| Description: Closure of the operation of a group. (Contributed by NM, 14-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpcl.b |
|
| grpcl.p |
|
| Ref | Expression |
|---|---|
| grpcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 13414 |
. 2
| |
| 2 | grpcl.b |
. . 3
| |
| 3 | grpcl.p |
. . 3
| |
| 4 | 2, 3 | mndcl 13330 |
. 2
|
| 5 | 1, 4 | syl3an1 1283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-ov 5960 df-inn 9057 df-2 9115 df-ndx 12910 df-slot 12911 df-base 12913 df-plusg 12997 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 |
| This theorem is referenced by: grpcld 13421 grprcan 13444 grprinv 13458 grpressid 13468 grplmulf1o 13481 grpinvadd 13485 grpsubf 13486 grpsubadd 13495 grpaddsubass 13497 grpnpcan 13499 grpsubsub4 13500 grppnpcan2 13501 grplactcnv 13509 imasgrp 13522 mulgcl 13550 mulgaddcomlem 13556 mulgdir 13565 nmzsubg 13621 nsgid 13626 eqgcpbl 13639 qusgrp 13643 qusadd 13645 ecqusaddcl 13650 ghmrn 13668 idghm 13670 ghmnsgima 13679 ghmnsgpreima 13680 ghmf1o 13686 conjghm 13687 qusghm 13693 ablsub4 13724 abladdsub4 13725 invghm 13740 rngacl 13779 rngpropd 13792 ringacl 13867 lmodacl 14136 lmodvacl 14139 rmodislmod 14188 |
| Copyright terms: Public domain | W3C validator |