ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpcl Unicode version

Theorem grpcl 13536
Description: Closure of the operation of a group. (Contributed by NM, 14-Aug-2011.)
Hypotheses
Ref Expression
grpcl.b  |-  B  =  ( Base `  G
)
grpcl.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
grpcl  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  B )

Proof of Theorem grpcl
StepHypRef Expression
1 grpmnd 13535 . 2  |-  ( G  e.  Grp  ->  G  e.  Mnd )
2 grpcl.b . . 3  |-  B  =  ( Base `  G
)
3 grpcl.p . . 3  |-  .+  =  ( +g  `  G )
42, 3mndcl 13451 . 2  |-  ( ( G  e.  Mnd  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  B )
51, 4syl3an1 1304 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002    = wceq 1395    e. wcel 2200   ` cfv 5317  (class class class)co 6000   Basecbs 13027   +g cplusg 13105   Mndcmnd 13444   Grpcgrp 13528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-ov 6003  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531
This theorem is referenced by:  grpcld  13542  grprcan  13565  grprinv  13579  grpressid  13589  grplmulf1o  13602  grpinvadd  13606  grpsubf  13607  grpsubadd  13616  grpaddsubass  13618  grpnpcan  13620  grpsubsub4  13621  grppnpcan2  13622  grplactcnv  13630  imasgrp  13643  mulgcl  13671  mulgaddcomlem  13677  mulgdir  13686  nmzsubg  13742  nsgid  13747  eqgcpbl  13760  qusgrp  13764  qusadd  13766  ecqusaddcl  13771  ghmrn  13789  idghm  13791  ghmnsgima  13800  ghmnsgpreima  13801  ghmf1o  13807  conjghm  13808  qusghm  13814  ablsub4  13845  abladdsub4  13846  invghm  13861  rngacl  13900  rngpropd  13913  ringacl  13988  lmodacl  14257  lmodvacl  14260  rmodislmod  14309
  Copyright terms: Public domain W3C validator