| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpcl | Unicode version | ||
| Description: Closure of the operation of a group. (Contributed by NM, 14-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpcl.b |
|
| grpcl.p |
|
| Ref | Expression |
|---|---|
| grpcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 13535 |
. 2
| |
| 2 | grpcl.b |
. . 3
| |
| 3 | grpcl.p |
. . 3
| |
| 4 | 2, 3 | mndcl 13451 |
. 2
|
| 5 | 1, 4 | syl3an1 1304 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-ov 6003 df-inn 9107 df-2 9165 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 |
| This theorem is referenced by: grpcld 13542 grprcan 13565 grprinv 13579 grpressid 13589 grplmulf1o 13602 grpinvadd 13606 grpsubf 13607 grpsubadd 13616 grpaddsubass 13618 grpnpcan 13620 grpsubsub4 13621 grppnpcan2 13622 grplactcnv 13630 imasgrp 13643 mulgcl 13671 mulgaddcomlem 13677 mulgdir 13686 nmzsubg 13742 nsgid 13747 eqgcpbl 13760 qusgrp 13764 qusadd 13766 ecqusaddcl 13771 ghmrn 13789 idghm 13791 ghmnsgima 13800 ghmnsgpreima 13801 ghmf1o 13807 conjghm 13808 qusghm 13814 ablsub4 13845 abladdsub4 13846 invghm 13861 rngacl 13900 rngpropd 13913 ringacl 13988 lmodacl 14257 lmodvacl 14260 rmodislmod 14309 |
| Copyright terms: Public domain | W3C validator |