ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpcl Unicode version

Theorem grpcl 12892
Description: Closure of the operation of a group. (Contributed by NM, 14-Aug-2011.)
Hypotheses
Ref Expression
grpcl.b  |-  B  =  ( Base `  G
)
grpcl.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
grpcl  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  B )

Proof of Theorem grpcl
StepHypRef Expression
1 grpmnd 12891 . 2  |-  ( G  e.  Grp  ->  G  e.  Mnd )
2 grpcl.b . . 3  |-  B  =  ( Base `  G
)
3 grpcl.p . . 3  |-  .+  =  ( +g  `  G )
42, 3mndcl 12831 . 2  |-  ( ( G  e.  Mnd  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  B )
51, 4syl3an1 1271 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 978    = wceq 1353    e. wcel 2148   ` cfv 5218  (class class class)co 5878   Basecbs 12465   +g cplusg 12539   Mndcmnd 12824   Grpcgrp 12884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7905  ax-resscn 7906  ax-1re 7908  ax-addrcl 7911
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5881  df-inn 8923  df-2 8981  df-ndx 12468  df-slot 12469  df-base 12471  df-plusg 12552  df-mgm 12782  df-sgrp 12815  df-mnd 12825  df-grp 12887
This theorem is referenced by:  grpcld  12897  grprcan  12917  grprinv  12930  grpressid  12938  grplmulf1o  12951  grpinvadd  12955  grpsubf  12956  grpsubadd  12965  grpaddsubass  12967  grpnpcan  12969  grpsubsub4  12970  grppnpcan2  12971  grplactcnv  12979  mulgcl  13010  mulgaddcomlem  13016  mulgdir  13025  nmzsubg  13080  nsgid  13085  eqgcpbl  13098  ablsub4  13127  abladdsub4  13128  ringacl  13224  lmodacl  13400  lmodvacl  13403  rmodislmod  13452
  Copyright terms: Public domain W3C validator