ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringcom Unicode version

Theorem ringcom 13527
Description: Commutativity of the additive group of a ring. (Contributed by Gérard Lang, 4-Dec-2014.)
Hypotheses
Ref Expression
ringacl.b  |-  B  =  ( Base `  R
)
ringacl.p  |-  .+  =  ( +g  `  R )
Assertion
Ref Expression
ringcom  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )

Proof of Theorem ringcom
StepHypRef Expression
1 simp1 999 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  R  e.  Ring )
2 ringacl.b . . . . . . . . . . 11  |-  B  =  ( Base `  R
)
3 eqid 2193 . . . . . . . . . . 11  |-  ( 1r
`  R )  =  ( 1r `  R
)
42, 3ringidcl 13516 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  B )
51, 4syl 14 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( 1r `  R )  e.  B )
6 ringacl.p . . . . . . . . . 10  |-  .+  =  ( +g  `  R )
72, 6ringacl 13526 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  e.  B  /\  ( 1r
`  R )  e.  B )  ->  (
( 1r `  R
)  .+  ( 1r `  R ) )  e.  B )
81, 5, 5, 7syl3anc 1249 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( 1r `  R
)  .+  ( 1r `  R ) )  e.  B )
9 simp2 1000 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
10 simp3 1001 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
11 eqid 2193 . . . . . . . . 9  |-  ( .r
`  R )  =  ( .r `  R
)
122, 6, 11ringdi 13514 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
( ( 1r `  R )  .+  ( 1r `  R ) )  e.  B  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( ( 1r
`  R )  .+  ( 1r `  R ) ) ( .r `  R ) ( X 
.+  Y ) )  =  ( ( ( ( 1r `  R
)  .+  ( 1r `  R ) ) ( .r `  R ) X )  .+  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) Y ) ) )
131, 8, 9, 10, 12syl13anc 1251 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) ( X  .+  Y ) )  =  ( ( ( ( 1r `  R ) 
.+  ( 1r `  R ) ) ( .r `  R ) X )  .+  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) Y ) ) )
142, 6ringacl 13526 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  e.  B )
152, 6, 11ringdir 13515 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
( 1r `  R
)  e.  B  /\  ( 1r `  R )  e.  B  /\  ( X  .+  Y )  e.  B ) )  -> 
( ( ( 1r
`  R )  .+  ( 1r `  R ) ) ( .r `  R ) ( X 
.+  Y ) )  =  ( ( ( 1r `  R ) ( .r `  R
) ( X  .+  Y ) )  .+  ( ( 1r `  R ) ( .r
`  R ) ( X  .+  Y ) ) ) )
161, 5, 5, 14, 15syl13anc 1251 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) ( X  .+  Y ) )  =  ( ( ( 1r
`  R ) ( .r `  R ) ( X  .+  Y
) )  .+  (
( 1r `  R
) ( .r `  R ) ( X 
.+  Y ) ) ) )
1713, 16eqtr3d 2228 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( ( 1r
`  R )  .+  ( 1r `  R ) ) ( .r `  R ) X ) 
.+  ( ( ( 1r `  R ) 
.+  ( 1r `  R ) ) ( .r `  R ) Y ) )  =  ( ( ( 1r
`  R ) ( .r `  R ) ( X  .+  Y
) )  .+  (
( 1r `  R
) ( .r `  R ) ( X 
.+  Y ) ) ) )
182, 6, 11ringdir 13515 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
( 1r `  R
)  e.  B  /\  ( 1r `  R )  e.  B  /\  X  e.  B ) )  -> 
( ( ( 1r
`  R )  .+  ( 1r `  R ) ) ( .r `  R ) X )  =  ( ( ( 1r `  R ) ( .r `  R
) X )  .+  ( ( 1r `  R ) ( .r
`  R ) X ) ) )
191, 5, 5, 9, 18syl13anc 1251 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) X )  =  ( ( ( 1r
`  R ) ( .r `  R ) X )  .+  (
( 1r `  R
) ( .r `  R ) X ) ) )
202, 11, 3ringlidm 13519 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) X )  =  X )
211, 9, 20syl2anc 411 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) X )  =  X )
2221, 21oveq12d 5936 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R ) ( .r
`  R ) X )  .+  ( ( 1r `  R ) ( .r `  R
) X ) )  =  ( X  .+  X ) )
2319, 22eqtrd 2226 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) X )  =  ( X  .+  X
) )
242, 6, 11ringdir 13515 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
( 1r `  R
)  e.  B  /\  ( 1r `  R )  e.  B  /\  Y  e.  B ) )  -> 
( ( ( 1r
`  R )  .+  ( 1r `  R ) ) ( .r `  R ) Y )  =  ( ( ( 1r `  R ) ( .r `  R
) Y )  .+  ( ( 1r `  R ) ( .r
`  R ) Y ) ) )
251, 5, 5, 10, 24syl13anc 1251 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) Y )  =  ( ( ( 1r
`  R ) ( .r `  R ) Y )  .+  (
( 1r `  R
) ( .r `  R ) Y ) ) )
262, 11, 3ringlidm 13519 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) Y )  =  Y )
271, 10, 26syl2anc 411 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) Y )  =  Y )
2827, 27oveq12d 5936 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R ) ( .r
`  R ) Y )  .+  ( ( 1r `  R ) ( .r `  R
) Y ) )  =  ( Y  .+  Y ) )
2925, 28eqtrd 2226 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R )  .+  ( 1r `  R ) ) ( .r `  R
) Y )  =  ( Y  .+  Y
) )
3023, 29oveq12d 5936 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( ( 1r
`  R )  .+  ( 1r `  R ) ) ( .r `  R ) X ) 
.+  ( ( ( 1r `  R ) 
.+  ( 1r `  R ) ) ( .r `  R ) Y ) )  =  ( ( X  .+  X )  .+  ( Y  .+  Y ) ) )
312, 11, 3ringlidm 13519 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( X  .+  Y )  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) ( X 
.+  Y ) )  =  ( X  .+  Y ) )
321, 14, 31syl2anc 411 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( 1r `  R
) ( .r `  R ) ( X 
.+  Y ) )  =  ( X  .+  Y ) )
3332, 32oveq12d 5936 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( 1r `  R ) ( .r
`  R ) ( X  .+  Y ) )  .+  ( ( 1r `  R ) ( .r `  R
) ( X  .+  Y ) ) )  =  ( ( X 
.+  Y )  .+  ( X  .+  Y ) ) )
3417, 30, 333eqtr3d 2234 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  X
)  .+  ( Y  .+  Y ) )  =  ( ( X  .+  Y )  .+  ( X  .+  Y ) ) )
35 ringgrp 13497 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Grp )
361, 35syl 14 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  R  e.  Grp )
372, 6ringacl 13526 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  X  e.  B )  ->  ( X  .+  X )  e.  B )
381, 9, 9, 37syl3anc 1249 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  X )  e.  B )
392, 6grpass 13081 . . . . . 6  |-  ( ( R  e.  Grp  /\  ( ( X  .+  X )  e.  B  /\  Y  e.  B  /\  Y  e.  B
) )  ->  (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( X 
.+  X )  .+  ( Y  .+  Y ) ) )
4036, 38, 10, 10, 39syl13anc 1251 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( X 
.+  X )  .+  ( Y  .+  Y ) ) )
412, 6grpass 13081 . . . . . 6  |-  ( ( R  e.  Grp  /\  ( ( X  .+  Y )  e.  B  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( ( X  .+  Y )  .+  X
)  .+  Y )  =  ( ( X 
.+  Y )  .+  ( X  .+  Y ) ) )
4236, 14, 9, 10, 41syl13anc 1251 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( X  .+  Y )  .+  X
)  .+  Y )  =  ( ( X 
.+  Y )  .+  ( X  .+  Y ) ) )
4334, 40, 423eqtr4d 2236 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( ( X  .+  Y ) 
.+  X )  .+  Y ) )
442, 6ringacl 13526 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( X  .+  X )  e.  B  /\  Y  e.  B )  ->  (
( X  .+  X
)  .+  Y )  e.  B )
451, 38, 10, 44syl3anc 1249 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  X
)  .+  Y )  e.  B )
462, 6ringacl 13526 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( X  .+  Y )  e.  B  /\  X  e.  B )  ->  (
( X  .+  Y
)  .+  X )  e.  B )
471, 14, 9, 46syl3anc 1249 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  Y
)  .+  X )  e.  B )
482, 6grprcan 13109 . . . . 5  |-  ( ( R  e.  Grp  /\  ( ( ( X 
.+  X )  .+  Y )  e.  B  /\  ( ( X  .+  Y )  .+  X
)  e.  B  /\  Y  e.  B )
)  ->  ( (
( ( X  .+  X )  .+  Y
)  .+  Y )  =  ( ( ( X  .+  Y ) 
.+  X )  .+  Y )  <->  ( ( X  .+  X )  .+  Y )  =  ( ( X  .+  Y
)  .+  X )
) )
4936, 45, 47, 10, 48syl13anc 1251 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( ( X 
.+  X )  .+  Y )  .+  Y
)  =  ( ( ( X  .+  Y
)  .+  X )  .+  Y )  <->  ( ( X  .+  X )  .+  Y )  =  ( ( X  .+  Y
)  .+  X )
) )
5043, 49mpbid 147 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  X
)  .+  Y )  =  ( ( X 
.+  Y )  .+  X ) )
512, 6grpass 13081 . . . 4  |-  ( ( R  e.  Grp  /\  ( X  e.  B  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( X  .+  X
)  .+  Y )  =  ( X  .+  ( X  .+  Y ) ) )
5236, 9, 9, 10, 51syl13anc 1251 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  X
)  .+  Y )  =  ( X  .+  ( X  .+  Y ) ) )
532, 6grpass 13081 . . . 4  |-  ( ( R  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  X  e.  B
) )  ->  (
( X  .+  Y
)  .+  X )  =  ( X  .+  ( Y  .+  X ) ) )
5436, 9, 10, 9, 53syl13anc 1251 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  Y
)  .+  X )  =  ( X  .+  ( Y  .+  X ) ) )
5550, 52, 543eqtr3d 2234 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  ( X  .+  Y ) )  =  ( X  .+  ( Y  .+  X ) ) )
562, 6ringacl 13526 . . . 4  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  ( Y  .+  X )  e.  B )
57563com23 1211 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .+  X )  e.  B )
582, 6grplcan 13134 . . 3  |-  ( ( R  e.  Grp  /\  ( ( X  .+  Y )  e.  B  /\  ( Y  .+  X
)  e.  B  /\  X  e.  B )
)  ->  ( ( X  .+  ( X  .+  Y ) )  =  ( X  .+  ( Y  .+  X ) )  <-> 
( X  .+  Y
)  =  ( Y 
.+  X ) ) )
5936, 14, 57, 9, 58syl13anc 1251 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .+  ( X  .+  Y ) )  =  ( X  .+  ( Y  .+  X ) )  <->  ( X  .+  Y )  =  ( Y  .+  X ) ) )
6055, 59mpbid 147 1  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   .rcmulr 12696   Grpcgrp 13072   1rcur 13455   Ringcrg 13492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-mgp 13417  df-ur 13456  df-ring 13494
This theorem is referenced by:  ringabl  13528
  Copyright terms: Public domain W3C validator