| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringcom | Unicode version | ||
| Description: Commutativity of the additive group of a ring. (Contributed by Gérard Lang, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| ringacl.b |
|
| ringacl.p |
|
| Ref | Expression |
|---|---|
| ringcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1021 |
. . . . . . . 8
| |
| 2 | ringacl.b |
. . . . . . . . . . 11
| |
| 3 | eqid 2229 |
. . . . . . . . . . 11
| |
| 4 | 2, 3 | ringidcl 13983 |
. . . . . . . . . 10
|
| 5 | 1, 4 | syl 14 |
. . . . . . . . 9
|
| 6 | ringacl.p |
. . . . . . . . . 10
| |
| 7 | 2, 6 | ringacl 13993 |
. . . . . . . . 9
|
| 8 | 1, 5, 5, 7 | syl3anc 1271 |
. . . . . . . 8
|
| 9 | simp2 1022 |
. . . . . . . 8
| |
| 10 | simp3 1023 |
. . . . . . . 8
| |
| 11 | eqid 2229 |
. . . . . . . . 9
| |
| 12 | 2, 6, 11 | ringdi 13981 |
. . . . . . . 8
|
| 13 | 1, 8, 9, 10, 12 | syl13anc 1273 |
. . . . . . 7
|
| 14 | 2, 6 | ringacl 13993 |
. . . . . . . 8
|
| 15 | 2, 6, 11 | ringdir 13982 |
. . . . . . . 8
|
| 16 | 1, 5, 5, 14, 15 | syl13anc 1273 |
. . . . . . 7
|
| 17 | 13, 16 | eqtr3d 2264 |
. . . . . 6
|
| 18 | 2, 6, 11 | ringdir 13982 |
. . . . . . . . 9
|
| 19 | 1, 5, 5, 9, 18 | syl13anc 1273 |
. . . . . . . 8
|
| 20 | 2, 11, 3 | ringlidm 13986 |
. . . . . . . . . 10
|
| 21 | 1, 9, 20 | syl2anc 411 |
. . . . . . . . 9
|
| 22 | 21, 21 | oveq12d 6019 |
. . . . . . . 8
|
| 23 | 19, 22 | eqtrd 2262 |
. . . . . . 7
|
| 24 | 2, 6, 11 | ringdir 13982 |
. . . . . . . . 9
|
| 25 | 1, 5, 5, 10, 24 | syl13anc 1273 |
. . . . . . . 8
|
| 26 | 2, 11, 3 | ringlidm 13986 |
. . . . . . . . . 10
|
| 27 | 1, 10, 26 | syl2anc 411 |
. . . . . . . . 9
|
| 28 | 27, 27 | oveq12d 6019 |
. . . . . . . 8
|
| 29 | 25, 28 | eqtrd 2262 |
. . . . . . 7
|
| 30 | 23, 29 | oveq12d 6019 |
. . . . . 6
|
| 31 | 2, 11, 3 | ringlidm 13986 |
. . . . . . . 8
|
| 32 | 1, 14, 31 | syl2anc 411 |
. . . . . . 7
|
| 33 | 32, 32 | oveq12d 6019 |
. . . . . 6
|
| 34 | 17, 30, 33 | 3eqtr3d 2270 |
. . . . 5
|
| 35 | ringgrp 13964 |
. . . . . . 7
| |
| 36 | 1, 35 | syl 14 |
. . . . . 6
|
| 37 | 2, 6 | ringacl 13993 |
. . . . . . 7
|
| 38 | 1, 9, 9, 37 | syl3anc 1271 |
. . . . . 6
|
| 39 | 2, 6 | grpass 13542 |
. . . . . 6
|
| 40 | 36, 38, 10, 10, 39 | syl13anc 1273 |
. . . . 5
|
| 41 | 2, 6 | grpass 13542 |
. . . . . 6
|
| 42 | 36, 14, 9, 10, 41 | syl13anc 1273 |
. . . . 5
|
| 43 | 34, 40, 42 | 3eqtr4d 2272 |
. . . 4
|
| 44 | 2, 6 | ringacl 13993 |
. . . . . 6
|
| 45 | 1, 38, 10, 44 | syl3anc 1271 |
. . . . 5
|
| 46 | 2, 6 | ringacl 13993 |
. . . . . 6
|
| 47 | 1, 14, 9, 46 | syl3anc 1271 |
. . . . 5
|
| 48 | 2, 6 | grprcan 13570 |
. . . . 5
|
| 49 | 36, 45, 47, 10, 48 | syl13anc 1273 |
. . . 4
|
| 50 | 43, 49 | mpbid 147 |
. . 3
|
| 51 | 2, 6 | grpass 13542 |
. . . 4
|
| 52 | 36, 9, 9, 10, 51 | syl13anc 1273 |
. . 3
|
| 53 | 2, 6 | grpass 13542 |
. . . 4
|
| 54 | 36, 9, 10, 9, 53 | syl13anc 1273 |
. . 3
|
| 55 | 50, 52, 54 | 3eqtr3d 2270 |
. 2
|
| 56 | 2, 6 | ringacl 13993 |
. . . 4
|
| 57 | 56 | 3com23 1233 |
. . 3
|
| 58 | 2, 6 | grplcan 13595 |
. . 3
|
| 59 | 36, 14, 57, 9, 58 | syl13anc 1273 |
. 2
|
| 60 | 55, 59 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-inn 9111 df-2 9169 df-3 9170 df-ndx 13035 df-slot 13036 df-base 13038 df-sets 13039 df-plusg 13123 df-mulr 13124 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 df-minusg 13537 df-mgp 13884 df-ur 13923 df-ring 13961 |
| This theorem is referenced by: ringabl 13995 |
| Copyright terms: Public domain | W3C validator |