Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ringcom | Unicode version |
Description: Commutativity of the additive group of a ring. (Contributed by Gérard Lang, 4-Dec-2014.) |
Ref | Expression |
---|---|
ringacl.b | |
ringacl.p |
Ref | Expression |
---|---|
ringcom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 997 | . . . . . . . 8 | |
2 | ringacl.b | . . . . . . . . . . 11 | |
3 | eqid 2175 | . . . . . . . . . . 11 | |
4 | 2, 3 | ringidcl 12996 | . . . . . . . . . 10 |
5 | 1, 4 | syl 14 | . . . . . . . . 9 |
6 | ringacl.p | . . . . . . . . . 10 | |
7 | 2, 6 | ringacl 13005 | . . . . . . . . 9 |
8 | 1, 5, 5, 7 | syl3anc 1238 | . . . . . . . 8 |
9 | simp2 998 | . . . . . . . 8 | |
10 | simp3 999 | . . . . . . . 8 | |
11 | eqid 2175 | . . . . . . . . 9 | |
12 | 2, 6, 11 | ringdi 12994 | . . . . . . . 8 |
13 | 1, 8, 9, 10, 12 | syl13anc 1240 | . . . . . . 7 |
14 | 2, 6 | ringacl 13005 | . . . . . . . 8 |
15 | 2, 6, 11 | ringdir 12995 | . . . . . . . 8 |
16 | 1, 5, 5, 14, 15 | syl13anc 1240 | . . . . . . 7 |
17 | 13, 16 | eqtr3d 2210 | . . . . . 6 |
18 | 2, 6, 11 | ringdir 12995 | . . . . . . . . 9 |
19 | 1, 5, 5, 9, 18 | syl13anc 1240 | . . . . . . . 8 |
20 | 2, 11, 3 | ringlidm 12999 | . . . . . . . . . 10 |
21 | 1, 9, 20 | syl2anc 411 | . . . . . . . . 9 |
22 | 21, 21 | oveq12d 5883 | . . . . . . . 8 |
23 | 19, 22 | eqtrd 2208 | . . . . . . 7 |
24 | 2, 6, 11 | ringdir 12995 | . . . . . . . . 9 |
25 | 1, 5, 5, 10, 24 | syl13anc 1240 | . . . . . . . 8 |
26 | 2, 11, 3 | ringlidm 12999 | . . . . . . . . . 10 |
27 | 1, 10, 26 | syl2anc 411 | . . . . . . . . 9 |
28 | 27, 27 | oveq12d 5883 | . . . . . . . 8 |
29 | 25, 28 | eqtrd 2208 | . . . . . . 7 |
30 | 23, 29 | oveq12d 5883 | . . . . . 6 |
31 | 2, 11, 3 | ringlidm 12999 | . . . . . . . 8 |
32 | 1, 14, 31 | syl2anc 411 | . . . . . . 7 |
33 | 32, 32 | oveq12d 5883 | . . . . . 6 |
34 | 17, 30, 33 | 3eqtr3d 2216 | . . . . 5 |
35 | ringgrp 12977 | . . . . . . 7 | |
36 | 1, 35 | syl 14 | . . . . . 6 |
37 | 2, 6 | ringacl 13005 | . . . . . . 7 |
38 | 1, 9, 9, 37 | syl3anc 1238 | . . . . . 6 |
39 | 2, 6 | grpass 12747 | . . . . . 6 |
40 | 36, 38, 10, 10, 39 | syl13anc 1240 | . . . . 5 |
41 | 2, 6 | grpass 12747 | . . . . . 6 |
42 | 36, 14, 9, 10, 41 | syl13anc 1240 | . . . . 5 |
43 | 34, 40, 42 | 3eqtr4d 2218 | . . . 4 |
44 | 2, 6 | ringacl 13005 | . . . . . 6 |
45 | 1, 38, 10, 44 | syl3anc 1238 | . . . . 5 |
46 | 2, 6 | ringacl 13005 | . . . . . 6 |
47 | 1, 14, 9, 46 | syl3anc 1238 | . . . . 5 |
48 | 2, 6 | grprcan 12770 | . . . . 5 |
49 | 36, 45, 47, 10, 48 | syl13anc 1240 | . . . 4 |
50 | 43, 49 | mpbid 147 | . . 3 |
51 | 2, 6 | grpass 12747 | . . . 4 |
52 | 36, 9, 9, 10, 51 | syl13anc 1240 | . . 3 |
53 | 2, 6 | grpass 12747 | . . . 4 |
54 | 36, 9, 10, 9, 53 | syl13anc 1240 | . . 3 |
55 | 50, 52, 54 | 3eqtr3d 2216 | . 2 |
56 | 2, 6 | ringacl 13005 | . . . 4 |
57 | 56 | 3com23 1209 | . . 3 |
58 | 2, 6 | grplcan 12791 | . . 3 |
59 | 36, 14, 57, 9, 58 | syl13anc 1240 | . 2 |
60 | 55, 59 | mpbid 147 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 w3a 978 wceq 1353 wcel 2146 cfv 5208 (class class class)co 5865 cbs 12428 cplusg 12492 cmulr 12493 cgrp 12738 cur 12935 crg 12972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-pre-ltirr 7898 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-ltxr 7971 df-inn 8891 df-2 8949 df-3 8950 df-ndx 12431 df-slot 12432 df-base 12434 df-sets 12435 df-plusg 12505 df-mulr 12506 df-0g 12628 df-mgm 12640 df-sgrp 12673 df-mnd 12683 df-grp 12741 df-minusg 12742 df-mgp 12926 df-ur 12936 df-ring 12974 |
This theorem is referenced by: ringabl 13007 |
Copyright terms: Public domain | W3C validator |