ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusring2 Unicode version

Theorem qusring2 13828
Description: The quotient structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
qusring2.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusring2.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusring2.p  |-  .+  =  ( +g  `  R )
qusring2.t  |-  .x.  =  ( .r `  R )
qusring2.o  |-  .1.  =  ( 1r `  R )
qusring2.r  |-  ( ph  ->  .~  Er  V )
qusring2.e1  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .+  b )  .~  (
p  .+  q )
) )
qusring2.e2  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
qusring2.x  |-  ( ph  ->  R  e.  Ring )
Assertion
Ref Expression
qusring2  |-  ( ph  ->  ( U  e.  Ring  /\ 
[  .1.  ]  .~  =  ( 1r `  U ) ) )
Distinct variable groups:    q, p,  .+    .1. ,
p, q    a, b, p, q, U    V, a,
b, p, q    .~ , a, b, p, q    ph, a,
b, p, q    .x. , p, q    R, p, q
Allowed substitution hints:    .+ ( a, b)    R( a, b)    .x. ( a, b)    .1. ( a, b)

Proof of Theorem qusring2
Dummy variables  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusring2.u . . . 4  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
2 qusring2.v . . . 4  |-  ( ph  ->  V  =  ( Base `  R ) )
3 eqid 2205 . . . 4  |-  ( u  e.  V  |->  [ u ]  .~  )  =  ( u  e.  V  |->  [ u ]  .~  )
4 qusring2.r . . . . 5  |-  ( ph  ->  .~  Er  V )
5 basfn 12890 . . . . . . 7  |-  Base  Fn  _V
6 qusring2.x . . . . . . . 8  |-  ( ph  ->  R  e.  Ring )
76elexd 2785 . . . . . . 7  |-  ( ph  ->  R  e.  _V )
8 funfvex 5593 . . . . . . . 8  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
98funfni 5376 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
105, 7, 9sylancr 414 . . . . . 6  |-  ( ph  ->  ( Base `  R
)  e.  _V )
112, 10eqeltrd 2282 . . . . 5  |-  ( ph  ->  V  e.  _V )
12 erex 6644 . . . . 5  |-  (  .~  Er  V  ->  ( V  e.  _V  ->  .~  e.  _V ) )
134, 11, 12sylc 62 . . . 4  |-  ( ph  ->  .~  e.  _V )
141, 2, 3, 13, 6qusval 13155 . . 3  |-  ( ph  ->  U  =  ( ( u  e.  V  |->  [ u ]  .~  )  "s  R ) )
15 qusring2.p . . 3  |-  .+  =  ( +g  `  R )
16 qusring2.t . . 3  |-  .x.  =  ( .r `  R )
17 qusring2.o . . 3  |-  .1.  =  ( 1r `  R )
181, 2, 3, 13, 6quslem 13156 . . 3  |-  ( ph  ->  ( u  e.  V  |->  [ u ]  .~  ) : V -onto-> ( V /.  .~  ) )
196adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  R  e.  Ring )
20 simprl 529 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  x  e.  V )
212adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  V  =  ( Base `  R ) )
2220, 21eleqtrd 2284 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  x  e.  ( Base `  R ) )
23 simprr 531 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
y  e.  V )
2423, 21eleqtrd 2284 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
y  e.  ( Base `  R ) )
25 eqid 2205 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
2625, 15ringacl 13792 . . . . . 6  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x  .+  y )  e.  (
Base `  R )
)
2719, 22, 24, 26syl3anc 1250 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .+  y
)  e.  ( Base `  R ) )
2827, 21eleqtrrd 2285 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .+  y
)  e.  V )
29 qusring2.e1 . . . 4  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .+  b )  .~  (
p  .+  q )
) )
304, 11, 3, 28, 29ercpbl 13163 . . 3  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( ( u  e.  V  |->  [ u ]  .~  ) `  a )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  p
)  /\  ( (
u  e.  V  |->  [ u ]  .~  ) `  b )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  q )
)  ->  ( (
u  e.  V  |->  [ u ]  .~  ) `  ( a  .+  b
) )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  ( p  .+  q ) ) ) )
3125, 16ringcl 13775 . . . . . 6  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x  .x.  y )  e.  (
Base `  R )
)
3219, 22, 24, 31syl3anc 1250 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .x.  y
)  e.  ( Base `  R ) )
3332, 21eleqtrrd 2285 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .x.  y
)  e.  V )
34 qusring2.e2 . . . 4  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
354, 11, 3, 33, 34ercpbl 13163 . . 3  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( ( u  e.  V  |->  [ u ]  .~  ) `  a )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  p
)  /\  ( (
u  e.  V  |->  [ u ]  .~  ) `  b )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  q )
)  ->  ( (
u  e.  V  |->  [ u ]  .~  ) `  ( a  .x.  b
) )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  ( p  .x.  q ) ) ) )
3614, 2, 15, 16, 17, 18, 30, 35, 6imasring 13826 . 2  |-  ( ph  ->  ( U  e.  Ring  /\  ( ( u  e.  V  |->  [ u ]  .~  ) `  .1.  )  =  ( 1r `  U ) ) )
37 ringsrg 13809 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. SRing
)
3825, 17srgidcl 13738 . . . . . . . 8  |-  ( R  e. SRing  ->  .1.  e.  ( Base `  R ) )
396, 37, 383syl 17 . . . . . . 7  |-  ( ph  ->  .1.  e.  ( Base `  R ) )
4039, 2eleqtrrd 2285 . . . . . 6  |-  ( ph  ->  .1.  e.  V )
414, 11, 3, 40divsfvalg 13161 . . . . 5  |-  ( ph  ->  ( ( u  e.  V  |->  [ u ]  .~  ) `  .1.  )  =  [  .1.  ]  .~  )
4241eqcomd 2211 . . . 4  |-  ( ph  ->  [  .1.  ]  .~  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  .1.  ) )
4342eqeq1d 2214 . . 3  |-  ( ph  ->  ( [  .1.  ]  .~  =  ( 1r `  U )  <->  ( (
u  e.  V  |->  [ u ]  .~  ) `  .1.  )  =  ( 1r `  U ) ) )
4443anbi2d 464 . 2  |-  ( ph  ->  ( ( U  e. 
Ring  /\  [  .1.  ]  .~  =  ( 1r `  U ) )  <->  ( U  e.  Ring  /\  ( (
u  e.  V  |->  [ u ]  .~  ) `  .1.  )  =  ( 1r `  U ) ) ) )
4536, 44mpbird 167 1  |-  ( ph  ->  ( U  e.  Ring  /\ 
[  .1.  ]  .~  =  ( 1r `  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   _Vcvv 2772   class class class wbr 4044    |-> cmpt 4105    Fn wfn 5266   ` cfv 5271  (class class class)co 5944    Er wer 6617   [cec 6618   /.cqs 6619   Basecbs 12832   +g cplusg 12909   .rcmulr 12910    /.s cqus 13132   1rcur 13721  SRingcsrg 13725   Ringcrg 13758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-tp 3641  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-er 6620  df-ec 6622  df-qs 6626  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-0g 13090  df-iimas 13134  df-qus 13135  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-cmn 13622  df-abl 13623  df-mgp 13683  df-ur 13722  df-srg 13726  df-ring 13760
This theorem is referenced by:  qus1  14288
  Copyright terms: Public domain W3C validator