ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusring2 Unicode version

Theorem qusring2 13409
Description: The quotient structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
qusring2.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusring2.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusring2.p  |-  .+  =  ( +g  `  R )
qusring2.t  |-  .x.  =  ( .r `  R )
qusring2.o  |-  .1.  =  ( 1r `  R )
qusring2.r  |-  ( ph  ->  .~  Er  V )
qusring2.e1  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .+  b )  .~  (
p  .+  q )
) )
qusring2.e2  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
qusring2.x  |-  ( ph  ->  R  e.  Ring )
Assertion
Ref Expression
qusring2  |-  ( ph  ->  ( U  e.  Ring  /\ 
[  .1.  ]  .~  =  ( 1r `  U ) ) )
Distinct variable groups:    q, p,  .+    .1. ,
p, q    a, b, p, q, U    V, a,
b, p, q    .~ , a, b, p, q    ph, a,
b, p, q    .x. , p, q    R, p, q
Allowed substitution hints:    .+ ( a, b)    R( a, b)    .x. ( a, b)    .1. ( a, b)

Proof of Theorem qusring2
Dummy variables  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusring2.u . . . 4  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
2 qusring2.v . . . 4  |-  ( ph  ->  V  =  ( Base `  R ) )
3 eqid 2189 . . . 4  |-  ( u  e.  V  |->  [ u ]  .~  )  =  ( u  e.  V  |->  [ u ]  .~  )
4 qusring2.r . . . . 5  |-  ( ph  ->  .~  Er  V )
5 basfn 12565 . . . . . . 7  |-  Base  Fn  _V
6 qusring2.x . . . . . . . 8  |-  ( ph  ->  R  e.  Ring )
76elexd 2765 . . . . . . 7  |-  ( ph  ->  R  e.  _V )
8 funfvex 5548 . . . . . . . 8  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
98funfni 5332 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
105, 7, 9sylancr 414 . . . . . 6  |-  ( ph  ->  ( Base `  R
)  e.  _V )
112, 10eqeltrd 2266 . . . . 5  |-  ( ph  ->  V  e.  _V )
12 erex 6578 . . . . 5  |-  (  .~  Er  V  ->  ( V  e.  _V  ->  .~  e.  _V ) )
134, 11, 12sylc 62 . . . 4  |-  ( ph  ->  .~  e.  _V )
141, 2, 3, 13, 6qusval 12793 . . 3  |-  ( ph  ->  U  =  ( ( u  e.  V  |->  [ u ]  .~  )  "s  R ) )
15 qusring2.p . . 3  |-  .+  =  ( +g  `  R )
16 qusring2.t . . 3  |-  .x.  =  ( .r `  R )
17 qusring2.o . . 3  |-  .1.  =  ( 1r `  R )
181, 2, 3, 13, 6quslem 12794 . . 3  |-  ( ph  ->  ( u  e.  V  |->  [ u ]  .~  ) : V -onto-> ( V /.  .~  ) )
196adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  R  e.  Ring )
20 simprl 529 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  x  e.  V )
212adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  V  =  ( Base `  R ) )
2220, 21eleqtrd 2268 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  x  e.  ( Base `  R ) )
23 simprr 531 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
y  e.  V )
2423, 21eleqtrd 2268 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
y  e.  ( Base `  R ) )
25 eqid 2189 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
2625, 15ringacl 13377 . . . . . 6  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x  .+  y )  e.  (
Base `  R )
)
2719, 22, 24, 26syl3anc 1249 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .+  y
)  e.  ( Base `  R ) )
2827, 21eleqtrrd 2269 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .+  y
)  e.  V )
29 qusring2.e1 . . . 4  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .+  b )  .~  (
p  .+  q )
) )
304, 11, 3, 28, 29ercpbl 12800 . . 3  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( ( u  e.  V  |->  [ u ]  .~  ) `  a )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  p
)  /\  ( (
u  e.  V  |->  [ u ]  .~  ) `  b )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  q )
)  ->  ( (
u  e.  V  |->  [ u ]  .~  ) `  ( a  .+  b
) )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  ( p  .+  q ) ) ) )
3125, 16ringcl 13360 . . . . . 6  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x  .x.  y )  e.  (
Base `  R )
)
3219, 22, 24, 31syl3anc 1249 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .x.  y
)  e.  ( Base `  R ) )
3332, 21eleqtrrd 2269 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .x.  y
)  e.  V )
34 qusring2.e2 . . . 4  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
354, 11, 3, 33, 34ercpbl 12800 . . 3  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( ( u  e.  V  |->  [ u ]  .~  ) `  a )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  p
)  /\  ( (
u  e.  V  |->  [ u ]  .~  ) `  b )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  q )
)  ->  ( (
u  e.  V  |->  [ u ]  .~  ) `  ( a  .x.  b
) )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  ( p  .x.  q ) ) ) )
3614, 2, 15, 16, 17, 18, 30, 35, 6imasring 13407 . 2  |-  ( ph  ->  ( U  e.  Ring  /\  ( ( u  e.  V  |->  [ u ]  .~  ) `  .1.  )  =  ( 1r `  U ) ) )
37 ringsrg 13392 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. SRing
)
3825, 17srgidcl 13323 . . . . . . . 8  |-  ( R  e. SRing  ->  .1.  e.  ( Base `  R ) )
396, 37, 383syl 17 . . . . . . 7  |-  ( ph  ->  .1.  e.  ( Base `  R ) )
4039, 2eleqtrrd 2269 . . . . . 6  |-  ( ph  ->  .1.  e.  V )
414, 11, 3, 40divsfvalg 12798 . . . . 5  |-  ( ph  ->  ( ( u  e.  V  |->  [ u ]  .~  ) `  .1.  )  =  [  .1.  ]  .~  )
4241eqcomd 2195 . . . 4  |-  ( ph  ->  [  .1.  ]  .~  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  .1.  ) )
4342eqeq1d 2198 . . 3  |-  ( ph  ->  ( [  .1.  ]  .~  =  ( 1r `  U )  <->  ( (
u  e.  V  |->  [ u ]  .~  ) `  .1.  )  =  ( 1r `  U ) ) )
4443anbi2d 464 . 2  |-  ( ph  ->  ( ( U  e. 
Ring  /\  [  .1.  ]  .~  =  ( 1r `  U ) )  <->  ( U  e.  Ring  /\  ( (
u  e.  V  |->  [ u ]  .~  ) `  .1.  )  =  ( 1r `  U ) ) ) )
4536, 44mpbird 167 1  |-  ( ph  ->  ( U  e.  Ring  /\ 
[  .1.  ]  .~  =  ( 1r `  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   _Vcvv 2752   class class class wbr 4018    |-> cmpt 4079    Fn wfn 5227   ` cfv 5232  (class class class)co 5892    Er wer 6551   [cec 6552   /.cqs 6553   Basecbs 12507   +g cplusg 12582   .rcmulr 12583    /.s cqus 12770   1rcur 13306  SRingcsrg 13310   Ringcrg 13343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7927  ax-resscn 7928  ax-1cn 7929  ax-1re 7930  ax-icn 7931  ax-addcl 7932  ax-addrcl 7933  ax-mulcl 7934  ax-addcom 7936  ax-addass 7938  ax-i2m1 7941  ax-0lt1 7942  ax-0id 7944  ax-rnegex 7945  ax-pre-ltirr 7948  ax-pre-lttrn 7950  ax-pre-ltadd 7952
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-tp 3615  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-f1 5237  df-fo 5238  df-f1o 5239  df-fv 5240  df-riota 5848  df-ov 5895  df-oprab 5896  df-mpo 5897  df-er 6554  df-ec 6556  df-qs 6560  df-pnf 8019  df-mnf 8020  df-ltxr 8022  df-inn 8945  df-2 9003  df-3 9004  df-ndx 12510  df-slot 12511  df-base 12513  df-sets 12514  df-plusg 12595  df-mulr 12596  df-0g 12756  df-iimas 12772  df-qus 12773  df-mgm 12825  df-sgrp 12858  df-mnd 12871  df-grp 12941  df-minusg 12942  df-cmn 13218  df-abl 13219  df-mgp 13268  df-ur 13307  df-srg 13311  df-ring 13345
This theorem is referenced by:  qus1  13834
  Copyright terms: Public domain W3C validator