ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusring2 Unicode version

Theorem qusring2 13698
Description: The quotient structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
qusring2.u  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
qusring2.v  |-  ( ph  ->  V  =  ( Base `  R ) )
qusring2.p  |-  .+  =  ( +g  `  R )
qusring2.t  |-  .x.  =  ( .r `  R )
qusring2.o  |-  .1.  =  ( 1r `  R )
qusring2.r  |-  ( ph  ->  .~  Er  V )
qusring2.e1  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .+  b )  .~  (
p  .+  q )
) )
qusring2.e2  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
qusring2.x  |-  ( ph  ->  R  e.  Ring )
Assertion
Ref Expression
qusring2  |-  ( ph  ->  ( U  e.  Ring  /\ 
[  .1.  ]  .~  =  ( 1r `  U ) ) )
Distinct variable groups:    q, p,  .+    .1. ,
p, q    a, b, p, q, U    V, a,
b, p, q    .~ , a, b, p, q    ph, a,
b, p, q    .x. , p, q    R, p, q
Allowed substitution hints:    .+ ( a, b)    R( a, b)    .x. ( a, b)    .1. ( a, b)

Proof of Theorem qusring2
Dummy variables  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusring2.u . . . 4  |-  ( ph  ->  U  =  ( R 
/.s  .~  ) )
2 qusring2.v . . . 4  |-  ( ph  ->  V  =  ( Base `  R ) )
3 eqid 2196 . . . 4  |-  ( u  e.  V  |->  [ u ]  .~  )  =  ( u  e.  V  |->  [ u ]  .~  )
4 qusring2.r . . . . 5  |-  ( ph  ->  .~  Er  V )
5 basfn 12761 . . . . . . 7  |-  Base  Fn  _V
6 qusring2.x . . . . . . . 8  |-  ( ph  ->  R  e.  Ring )
76elexd 2776 . . . . . . 7  |-  ( ph  ->  R  e.  _V )
8 funfvex 5578 . . . . . . . 8  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
98funfni 5361 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
105, 7, 9sylancr 414 . . . . . 6  |-  ( ph  ->  ( Base `  R
)  e.  _V )
112, 10eqeltrd 2273 . . . . 5  |-  ( ph  ->  V  e.  _V )
12 erex 6625 . . . . 5  |-  (  .~  Er  V  ->  ( V  e.  _V  ->  .~  e.  _V ) )
134, 11, 12sylc 62 . . . 4  |-  ( ph  ->  .~  e.  _V )
141, 2, 3, 13, 6qusval 13025 . . 3  |-  ( ph  ->  U  =  ( ( u  e.  V  |->  [ u ]  .~  )  "s  R ) )
15 qusring2.p . . 3  |-  .+  =  ( +g  `  R )
16 qusring2.t . . 3  |-  .x.  =  ( .r `  R )
17 qusring2.o . . 3  |-  .1.  =  ( 1r `  R )
181, 2, 3, 13, 6quslem 13026 . . 3  |-  ( ph  ->  ( u  e.  V  |->  [ u ]  .~  ) : V -onto-> ( V /.  .~  ) )
196adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  R  e.  Ring )
20 simprl 529 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  x  e.  V )
212adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  V  =  ( Base `  R ) )
2220, 21eleqtrd 2275 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  ->  x  e.  ( Base `  R ) )
23 simprr 531 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
y  e.  V )
2423, 21eleqtrd 2275 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
y  e.  ( Base `  R ) )
25 eqid 2196 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
2625, 15ringacl 13662 . . . . . 6  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x  .+  y )  e.  (
Base `  R )
)
2719, 22, 24, 26syl3anc 1249 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .+  y
)  e.  ( Base `  R ) )
2827, 21eleqtrrd 2276 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .+  y
)  e.  V )
29 qusring2.e1 . . . 4  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .+  b )  .~  (
p  .+  q )
) )
304, 11, 3, 28, 29ercpbl 13033 . . 3  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( ( u  e.  V  |->  [ u ]  .~  ) `  a )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  p
)  /\  ( (
u  e.  V  |->  [ u ]  .~  ) `  b )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  q )
)  ->  ( (
u  e.  V  |->  [ u ]  .~  ) `  ( a  .+  b
) )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  ( p  .+  q ) ) ) )
3125, 16ringcl 13645 . . . . . 6  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x  .x.  y )  e.  (
Base `  R )
)
3219, 22, 24, 31syl3anc 1249 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .x.  y
)  e.  ( Base `  R ) )
3332, 21eleqtrrd 2276 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .x.  y
)  e.  V )
34 qusring2.e2 . . . 4  |-  ( ph  ->  ( ( a  .~  p  /\  b  .~  q
)  ->  ( a  .x.  b )  .~  (
p  .x.  q )
) )
354, 11, 3, 33, 34ercpbl 13033 . . 3  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( ( u  e.  V  |->  [ u ]  .~  ) `  a )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  p
)  /\  ( (
u  e.  V  |->  [ u ]  .~  ) `  b )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  q )
)  ->  ( (
u  e.  V  |->  [ u ]  .~  ) `  ( a  .x.  b
) )  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  ( p  .x.  q ) ) ) )
3614, 2, 15, 16, 17, 18, 30, 35, 6imasring 13696 . 2  |-  ( ph  ->  ( U  e.  Ring  /\  ( ( u  e.  V  |->  [ u ]  .~  ) `  .1.  )  =  ( 1r `  U ) ) )
37 ringsrg 13679 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. SRing
)
3825, 17srgidcl 13608 . . . . . . . 8  |-  ( R  e. SRing  ->  .1.  e.  ( Base `  R ) )
396, 37, 383syl 17 . . . . . . 7  |-  ( ph  ->  .1.  e.  ( Base `  R ) )
4039, 2eleqtrrd 2276 . . . . . 6  |-  ( ph  ->  .1.  e.  V )
414, 11, 3, 40divsfvalg 13031 . . . . 5  |-  ( ph  ->  ( ( u  e.  V  |->  [ u ]  .~  ) `  .1.  )  =  [  .1.  ]  .~  )
4241eqcomd 2202 . . . 4  |-  ( ph  ->  [  .1.  ]  .~  =  ( ( u  e.  V  |->  [ u ]  .~  ) `  .1.  ) )
4342eqeq1d 2205 . . 3  |-  ( ph  ->  ( [  .1.  ]  .~  =  ( 1r `  U )  <->  ( (
u  e.  V  |->  [ u ]  .~  ) `  .1.  )  =  ( 1r `  U ) ) )
4443anbi2d 464 . 2  |-  ( ph  ->  ( ( U  e. 
Ring  /\  [  .1.  ]  .~  =  ( 1r `  U ) )  <->  ( U  e.  Ring  /\  ( (
u  e.  V  |->  [ u ]  .~  ) `  .1.  )  =  ( 1r `  U ) ) ) )
4536, 44mpbird 167 1  |-  ( ph  ->  ( U  e.  Ring  /\ 
[  .1.  ]  .~  =  ( 1r `  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763   class class class wbr 4034    |-> cmpt 4095    Fn wfn 5254   ` cfv 5259  (class class class)co 5925    Er wer 6598   [cec 6599   /.cqs 6600   Basecbs 12703   +g cplusg 12780   .rcmulr 12781    /.s cqus 13002   1rcur 13591  SRingcsrg 13595   Ringcrg 13628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-er 6601  df-ec 6603  df-qs 6607  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-0g 12960  df-iimas 13004  df-qus 13005  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-cmn 13492  df-abl 13493  df-mgp 13553  df-ur 13592  df-srg 13596  df-ring 13630
This theorem is referenced by:  qus1  14158
  Copyright terms: Public domain W3C validator