ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringrghm Unicode version

Theorem ringrghm 13558
Description: Right-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
ringlghm.b  |-  B  =  ( Base `  R
)
ringlghm.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
ringrghm  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
x  e.  B  |->  ( x  .x.  X ) )  e.  ( R 
GrpHom  R ) )
Distinct variable groups:    x, B    x, R    x,  .x.    x, X

Proof of Theorem ringrghm
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringlghm.b . 2  |-  B  =  ( Base `  R
)
2 eqid 2193 . 2  |-  ( +g  `  R )  =  ( +g  `  R )
3 ringgrp 13497 . . 3  |-  ( R  e.  Ring  ->  R  e. 
Grp )
43adantr 276 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  R  e.  Grp )
5 ringlghm.t . . . . . 6  |-  .x.  =  ( .r `  R )
61, 5ringcl 13509 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  B  /\  X  e.  B )  ->  (
x  .x.  X )  e.  B )
763expa 1205 . . . 4  |-  ( ( ( R  e.  Ring  /\  x  e.  B )  /\  X  e.  B
)  ->  ( x  .x.  X )  e.  B
)
87an32s 568 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( x  .x.  X )  e.  B
)
98fmpttd 5713 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
x  e.  B  |->  ( x  .x.  X ) ) : B --> B )
10 df-3an 982 . . . . 5  |-  ( ( y  e.  B  /\  z  e.  B  /\  X  e.  B )  <->  ( ( y  e.  B  /\  z  e.  B
)  /\  X  e.  B ) )
111, 2, 5ringdir 13515 . . . . 5  |-  ( ( R  e.  Ring  /\  (
y  e.  B  /\  z  e.  B  /\  X  e.  B )
)  ->  ( (
y ( +g  `  R
) z )  .x.  X )  =  ( ( y  .x.  X
) ( +g  `  R
) ( z  .x.  X ) ) )
1210, 11sylan2br 288 . . . 4  |-  ( ( R  e.  Ring  /\  (
( y  e.  B  /\  z  e.  B
)  /\  X  e.  B ) )  -> 
( ( y ( +g  `  R ) z )  .x.  X
)  =  ( ( y  .x.  X ) ( +g  `  R
) ( z  .x.  X ) ) )
1312anass1rs 571 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( y ( +g  `  R ) z )  .x.  X
)  =  ( ( y  .x.  X ) ( +g  `  R
) ( z  .x.  X ) ) )
14 eqid 2193 . . . 4  |-  ( x  e.  B  |->  ( x 
.x.  X ) )  =  ( x  e.  B  |->  ( x  .x.  X ) )
15 oveq1 5925 . . . 4  |-  ( x  =  ( y ( +g  `  R ) z )  ->  (
x  .x.  X )  =  ( ( y ( +g  `  R
) z )  .x.  X ) )
161, 2ringacl 13526 . . . . . 6  |-  ( ( R  e.  Ring  /\  y  e.  B  /\  z  e.  B )  ->  (
y ( +g  `  R
) z )  e.  B )
17163expb 1206 . . . . 5  |-  ( ( R  e.  Ring  /\  (
y  e.  B  /\  z  e.  B )
)  ->  ( y
( +g  `  R ) z )  e.  B
)
1817adantlr 477 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( y ( +g  `  R ) z )  e.  B )
19 simpll 527 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  ->  R  e.  Ring )
20 simplr 528 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  ->  X  e.  B )
211, 5ringcl 13509 . . . . 5  |-  ( ( R  e.  Ring  /\  (
y ( +g  `  R
) z )  e.  B  /\  X  e.  B )  ->  (
( y ( +g  `  R ) z ) 
.x.  X )  e.  B )
2219, 18, 20, 21syl3anc 1249 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( y ( +g  `  R ) z )  .x.  X
)  e.  B )
2314, 15, 18, 22fvmptd3 5651 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( x  e.  B  |->  ( x  .x.  X ) ) `  ( y ( +g  `  R ) z ) )  =  ( ( y ( +g  `  R
) z )  .x.  X ) )
24 oveq1 5925 . . . . 5  |-  ( x  =  y  ->  (
x  .x.  X )  =  ( y  .x.  X ) )
25 simprl 529 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
y  e.  B )
261, 5ringcl 13509 . . . . . 6  |-  ( ( R  e.  Ring  /\  y  e.  B  /\  X  e.  B )  ->  (
y  .x.  X )  e.  B )
2719, 25, 20, 26syl3anc 1249 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( y  .x.  X
)  e.  B )
2814, 24, 25, 27fvmptd3 5651 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( x  e.  B  |->  ( x  .x.  X ) ) `  y )  =  ( y  .x.  X ) )
29 oveq1 5925 . . . . 5  |-  ( x  =  z  ->  (
x  .x.  X )  =  ( z  .x.  X ) )
30 simprr 531 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
z  e.  B )
311, 5ringcl 13509 . . . . . 6  |-  ( ( R  e.  Ring  /\  z  e.  B  /\  X  e.  B )  ->  (
z  .x.  X )  e.  B )
3219, 30, 20, 31syl3anc 1249 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( z  .x.  X
)  e.  B )
3314, 29, 30, 32fvmptd3 5651 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( x  e.  B  |->  ( x  .x.  X ) ) `  z )  =  ( z  .x.  X ) )
3428, 33oveq12d 5936 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( ( x  e.  B  |->  ( x 
.x.  X ) ) `
 y ) ( +g  `  R ) ( ( x  e.  B  |->  ( x  .x.  X ) ) `  z ) )  =  ( ( y  .x.  X ) ( +g  `  R ) ( z 
.x.  X ) ) )
3513, 23, 343eqtr4d 2236 . 2  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( x  e.  B  |->  ( x  .x.  X ) ) `  ( y ( +g  `  R ) z ) )  =  ( ( ( x  e.  B  |->  ( x  .x.  X
) ) `  y
) ( +g  `  R
) ( ( x  e.  B  |->  ( x 
.x.  X ) ) `
 z ) ) )
361, 1, 2, 2, 4, 4, 9, 35isghmd 13322 1  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
x  e.  B  |->  ( x  .x.  X ) )  e.  ( R 
GrpHom  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164    |-> cmpt 4090   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   .rcmulr 12696   Grpcgrp 13072    GrpHom cghm 13310   Ringcrg 13492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-ghm 13311  df-mgp 13417  df-ring 13494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator