| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringrghm | Unicode version | ||
| Description: Right-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.) |
| Ref | Expression |
|---|---|
| ringlghm.b |
|
| ringlghm.t |
|
| Ref | Expression |
|---|---|
| ringrghm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringlghm.b |
. 2
| |
| 2 | eqid 2196 |
. 2
| |
| 3 | ringgrp 13557 |
. . 3
| |
| 4 | 3 | adantr 276 |
. 2
|
| 5 | ringlghm.t |
. . . . . 6
| |
| 6 | 1, 5 | ringcl 13569 |
. . . . 5
|
| 7 | 6 | 3expa 1205 |
. . . 4
|
| 8 | 7 | an32s 568 |
. . 3
|
| 9 | 8 | fmpttd 5717 |
. 2
|
| 10 | df-3an 982 |
. . . . 5
| |
| 11 | 1, 2, 5 | ringdir 13575 |
. . . . 5
|
| 12 | 10, 11 | sylan2br 288 |
. . . 4
|
| 13 | 12 | anass1rs 571 |
. . 3
|
| 14 | eqid 2196 |
. . . 4
| |
| 15 | oveq1 5929 |
. . . 4
| |
| 16 | 1, 2 | ringacl 13586 |
. . . . . 6
|
| 17 | 16 | 3expb 1206 |
. . . . 5
|
| 18 | 17 | adantlr 477 |
. . . 4
|
| 19 | simpll 527 |
. . . . 5
| |
| 20 | simplr 528 |
. . . . 5
| |
| 21 | 1, 5 | ringcl 13569 |
. . . . 5
|
| 22 | 19, 18, 20, 21 | syl3anc 1249 |
. . . 4
|
| 23 | 14, 15, 18, 22 | fvmptd3 5655 |
. . 3
|
| 24 | oveq1 5929 |
. . . . 5
| |
| 25 | simprl 529 |
. . . . 5
| |
| 26 | 1, 5 | ringcl 13569 |
. . . . . 6
|
| 27 | 19, 25, 20, 26 | syl3anc 1249 |
. . . . 5
|
| 28 | 14, 24, 25, 27 | fvmptd3 5655 |
. . . 4
|
| 29 | oveq1 5929 |
. . . . 5
| |
| 30 | simprr 531 |
. . . . 5
| |
| 31 | 1, 5 | ringcl 13569 |
. . . . . 6
|
| 32 | 19, 30, 20, 31 | syl3anc 1249 |
. . . . 5
|
| 33 | 14, 29, 30, 32 | fvmptd3 5655 |
. . . 4
|
| 34 | 28, 33 | oveq12d 5940 |
. . 3
|
| 35 | 13, 23, 34 | 3eqtr4d 2239 |
. 2
|
| 36 | 1, 1, 2, 2, 4, 4, 9, 35 | isghmd 13382 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-plusg 12768 df-mulr 12769 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-ghm 13371 df-mgp 13477 df-ring 13554 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |