ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringrghm Unicode version

Theorem ringrghm 14033
Description: Right-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
ringlghm.b  |-  B  =  ( Base `  R
)
ringlghm.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
ringrghm  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
x  e.  B  |->  ( x  .x.  X ) )  e.  ( R 
GrpHom  R ) )
Distinct variable groups:    x, B    x, R    x,  .x.    x, X

Proof of Theorem ringrghm
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringlghm.b . 2  |-  B  =  ( Base `  R
)
2 eqid 2229 . 2  |-  ( +g  `  R )  =  ( +g  `  R )
3 ringgrp 13972 . . 3  |-  ( R  e.  Ring  ->  R  e. 
Grp )
43adantr 276 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  R  e.  Grp )
5 ringlghm.t . . . . . 6  |-  .x.  =  ( .r `  R )
61, 5ringcl 13984 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  B  /\  X  e.  B )  ->  (
x  .x.  X )  e.  B )
763expa 1227 . . . 4  |-  ( ( ( R  e.  Ring  /\  x  e.  B )  /\  X  e.  B
)  ->  ( x  .x.  X )  e.  B
)
87an32s 568 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  x  e.  B
)  ->  ( x  .x.  X )  e.  B
)
98fmpttd 5792 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
x  e.  B  |->  ( x  .x.  X ) ) : B --> B )
10 df-3an 1004 . . . . 5  |-  ( ( y  e.  B  /\  z  e.  B  /\  X  e.  B )  <->  ( ( y  e.  B  /\  z  e.  B
)  /\  X  e.  B ) )
111, 2, 5ringdir 13990 . . . . 5  |-  ( ( R  e.  Ring  /\  (
y  e.  B  /\  z  e.  B  /\  X  e.  B )
)  ->  ( (
y ( +g  `  R
) z )  .x.  X )  =  ( ( y  .x.  X
) ( +g  `  R
) ( z  .x.  X ) ) )
1210, 11sylan2br 288 . . . 4  |-  ( ( R  e.  Ring  /\  (
( y  e.  B  /\  z  e.  B
)  /\  X  e.  B ) )  -> 
( ( y ( +g  `  R ) z )  .x.  X
)  =  ( ( y  .x.  X ) ( +g  `  R
) ( z  .x.  X ) ) )
1312anass1rs 571 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( y ( +g  `  R ) z )  .x.  X
)  =  ( ( y  .x.  X ) ( +g  `  R
) ( z  .x.  X ) ) )
14 eqid 2229 . . . 4  |-  ( x  e.  B  |->  ( x 
.x.  X ) )  =  ( x  e.  B  |->  ( x  .x.  X ) )
15 oveq1 6014 . . . 4  |-  ( x  =  ( y ( +g  `  R ) z )  ->  (
x  .x.  X )  =  ( ( y ( +g  `  R
) z )  .x.  X ) )
161, 2ringacl 14001 . . . . . 6  |-  ( ( R  e.  Ring  /\  y  e.  B  /\  z  e.  B )  ->  (
y ( +g  `  R
) z )  e.  B )
17163expb 1228 . . . . 5  |-  ( ( R  e.  Ring  /\  (
y  e.  B  /\  z  e.  B )
)  ->  ( y
( +g  `  R ) z )  e.  B
)
1817adantlr 477 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( y ( +g  `  R ) z )  e.  B )
19 simpll 527 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  ->  R  e.  Ring )
20 simplr 528 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  ->  X  e.  B )
211, 5ringcl 13984 . . . . 5  |-  ( ( R  e.  Ring  /\  (
y ( +g  `  R
) z )  e.  B  /\  X  e.  B )  ->  (
( y ( +g  `  R ) z ) 
.x.  X )  e.  B )
2219, 18, 20, 21syl3anc 1271 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( y ( +g  `  R ) z )  .x.  X
)  e.  B )
2314, 15, 18, 22fvmptd3 5730 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( x  e.  B  |->  ( x  .x.  X ) ) `  ( y ( +g  `  R ) z ) )  =  ( ( y ( +g  `  R
) z )  .x.  X ) )
24 oveq1 6014 . . . . 5  |-  ( x  =  y  ->  (
x  .x.  X )  =  ( y  .x.  X ) )
25 simprl 529 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
y  e.  B )
261, 5ringcl 13984 . . . . . 6  |-  ( ( R  e.  Ring  /\  y  e.  B  /\  X  e.  B )  ->  (
y  .x.  X )  e.  B )
2719, 25, 20, 26syl3anc 1271 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( y  .x.  X
)  e.  B )
2814, 24, 25, 27fvmptd3 5730 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( x  e.  B  |->  ( x  .x.  X ) ) `  y )  =  ( y  .x.  X ) )
29 oveq1 6014 . . . . 5  |-  ( x  =  z  ->  (
x  .x.  X )  =  ( z  .x.  X ) )
30 simprr 531 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
z  e.  B )
311, 5ringcl 13984 . . . . . 6  |-  ( ( R  e.  Ring  /\  z  e.  B  /\  X  e.  B )  ->  (
z  .x.  X )  e.  B )
3219, 30, 20, 31syl3anc 1271 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( z  .x.  X
)  e.  B )
3314, 29, 30, 32fvmptd3 5730 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( x  e.  B  |->  ( x  .x.  X ) ) `  z )  =  ( z  .x.  X ) )
3428, 33oveq12d 6025 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( ( x  e.  B  |->  ( x 
.x.  X ) ) `
 y ) ( +g  `  R ) ( ( x  e.  B  |->  ( x  .x.  X ) ) `  z ) )  =  ( ( y  .x.  X ) ( +g  `  R ) ( z 
.x.  X ) ) )
3513, 23, 343eqtr4d 2272 . 2  |-  ( ( ( R  e.  Ring  /\  X  e.  B )  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( x  e.  B  |->  ( x  .x.  X ) ) `  ( y ( +g  `  R ) z ) )  =  ( ( ( x  e.  B  |->  ( x  .x.  X
) ) `  y
) ( +g  `  R
) ( ( x  e.  B  |->  ( x 
.x.  X ) ) `
 z ) ) )
361, 1, 2, 2, 4, 4, 9, 35isghmd 13797 1  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
x  e.  B  |->  ( x  .x.  X ) )  e.  ( R 
GrpHom  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200    |-> cmpt 4145   ` cfv 5318  (class class class)co 6007   Basecbs 13040   +g cplusg 13118   .rcmulr 13119   Grpcgrp 13541    GrpHom cghm 13785   Ringcrg 13967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-plusg 13131  df-mulr 13132  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-ghm 13786  df-mgp 13892  df-ring 13969
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator