ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvrdir Unicode version

Theorem dvrdir 14107
Description: Distributive law for the division operation of a ring. (Contributed by Thierry Arnoux, 30-Oct-2017.)
Hypotheses
Ref Expression
dvrdir.b  |-  B  =  ( Base `  R
)
dvrdir.u  |-  U  =  (Unit `  R )
dvrdir.p  |-  .+  =  ( +g  `  R )
dvrdir.t  |-  ./  =  (/r
`  R )
Assertion
Ref Expression
dvrdir  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( X  .+  Y )  ./  Z )  =  ( ( X  ./  Z
)  .+  ( Y  ./  Z ) ) )

Proof of Theorem dvrdir
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  R  e.  Ring )
2 simpr1 1027 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  X  e.  B )
3 simpr2 1028 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  Y  e.  B )
4 dvrdir.b . . . . 5  |-  B  =  ( Base `  R
)
54a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  B  =  ( Base `  R )
)
6 dvrdir.u . . . . 5  |-  U  =  (Unit `  R )
76a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  U  =  (Unit `  R ) )
8 ringsrg 14010 . . . . 5  |-  ( R  e.  Ring  ->  R  e. SRing
)
98adantr 276 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  R  e. SRing )
10 simpr3 1029 . . . . 5  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  Z  e.  U )
11 eqid 2229 . . . . . 6  |-  ( invr `  R )  =  (
invr `  R )
126, 11unitinvcl 14087 . . . . 5  |-  ( ( R  e.  Ring  /\  Z  e.  U )  ->  (
( invr `  R ) `  Z )  e.  U
)
1310, 12syldan 282 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( invr `  R ) `  Z )  e.  U
)
145, 7, 9, 13unitcld 14072 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( invr `  R ) `  Z )  e.  B
)
15 dvrdir.p . . . 4  |-  .+  =  ( +g  `  R )
16 eqid 2229 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
174, 15, 16ringdir 13982 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  ( ( invr `  R
) `  Z )  e.  B ) )  -> 
( ( X  .+  Y ) ( .r
`  R ) ( ( invr `  R
) `  Z )
)  =  ( ( X ( .r `  R ) ( (
invr `  R ) `  Z ) )  .+  ( Y ( .r `  R ) ( (
invr `  R ) `  Z ) ) ) )
181, 2, 3, 14, 17syl13anc 1273 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( X  .+  Y ) ( .r `  R ) ( ( invr `  R
) `  Z )
)  =  ( ( X ( .r `  R ) ( (
invr `  R ) `  Z ) )  .+  ( Y ( .r `  R ) ( (
invr `  R ) `  Z ) ) ) )
19 eqidd 2230 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( .r `  R )  =  ( .r `  R ) )
20 eqidd 2230 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( invr `  R )  =  (
invr `  R )
)
21 dvrdir.t . . . 4  |-  ./  =  (/r
`  R )
2221a1i 9 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ./  =  (/r `  R ) )
23 ringgrp 13964 . . . . 5  |-  ( R  e.  Ring  ->  R  e. 
Grp )
2423adantr 276 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  R  e.  Grp )
254, 15, 24, 2, 3grpcld 13547 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( X  .+  Y )  e.  B
)
265, 19, 7, 20, 22, 1, 25, 10dvrvald 14098 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( X  .+  Y )  ./  Z )  =  ( ( X  .+  Y
) ( .r `  R ) ( (
invr `  R ) `  Z ) ) )
275, 19, 7, 20, 22, 1, 2, 10dvrvald 14098 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( X  ./  Z )  =  ( X ( .r `  R ) ( (
invr `  R ) `  Z ) ) )
285, 19, 7, 20, 22, 1, 3, 10dvrvald 14098 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( Y  ./  Z )  =  ( Y ( .r `  R ) ( (
invr `  R ) `  Z ) ) )
2927, 28oveq12d 6019 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( X  ./  Z )  .+  ( Y  ./  Z ) )  =  ( ( X ( .r `  R ) ( (
invr `  R ) `  Z ) )  .+  ( Y ( .r `  R ) ( (
invr `  R ) `  Z ) ) ) )
3018, 26, 293eqtr4d 2272 1  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( X  .+  Y )  ./  Z )  =  ( ( X  ./  Z
)  .+  ( Y  ./  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   .rcmulr 13111   Grpcgrp 13533  SRingcsrg 13926   Ringcrg 13959  Unitcui 14050   invrcinvr 14084  /rcdvr 14095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-tpos 6391  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-mulr 13124  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-cmn 13823  df-abl 13824  df-mgp 13884  df-ur 13923  df-srg 13927  df-ring 13961  df-oppr 14031  df-dvdsr 14052  df-unit 14053  df-invr 14085  df-dvr 14096
This theorem is referenced by:  lringuplu  14160
  Copyright terms: Public domain W3C validator