ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvrdir Unicode version

Theorem dvrdir 13775
Description: Distributive law for the division operation of a ring. (Contributed by Thierry Arnoux, 30-Oct-2017.)
Hypotheses
Ref Expression
dvrdir.b  |-  B  =  ( Base `  R
)
dvrdir.u  |-  U  =  (Unit `  R )
dvrdir.p  |-  .+  =  ( +g  `  R )
dvrdir.t  |-  ./  =  (/r
`  R )
Assertion
Ref Expression
dvrdir  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( X  .+  Y )  ./  Z )  =  ( ( X  ./  Z
)  .+  ( Y  ./  Z ) ) )

Proof of Theorem dvrdir
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  R  e.  Ring )
2 simpr1 1005 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  X  e.  B )
3 simpr2 1006 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  Y  e.  B )
4 dvrdir.b . . . . 5  |-  B  =  ( Base `  R
)
54a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  B  =  ( Base `  R )
)
6 dvrdir.u . . . . 5  |-  U  =  (Unit `  R )
76a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  U  =  (Unit `  R ) )
8 ringsrg 13679 . . . . 5  |-  ( R  e.  Ring  ->  R  e. SRing
)
98adantr 276 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  R  e. SRing )
10 simpr3 1007 . . . . 5  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  Z  e.  U )
11 eqid 2196 . . . . . 6  |-  ( invr `  R )  =  (
invr `  R )
126, 11unitinvcl 13755 . . . . 5  |-  ( ( R  e.  Ring  /\  Z  e.  U )  ->  (
( invr `  R ) `  Z )  e.  U
)
1310, 12syldan 282 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( invr `  R ) `  Z )  e.  U
)
145, 7, 9, 13unitcld 13740 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( invr `  R ) `  Z )  e.  B
)
15 dvrdir.p . . . 4  |-  .+  =  ( +g  `  R )
16 eqid 2196 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
174, 15, 16ringdir 13651 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  ( ( invr `  R
) `  Z )  e.  B ) )  -> 
( ( X  .+  Y ) ( .r
`  R ) ( ( invr `  R
) `  Z )
)  =  ( ( X ( .r `  R ) ( (
invr `  R ) `  Z ) )  .+  ( Y ( .r `  R ) ( (
invr `  R ) `  Z ) ) ) )
181, 2, 3, 14, 17syl13anc 1251 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( X  .+  Y ) ( .r `  R ) ( ( invr `  R
) `  Z )
)  =  ( ( X ( .r `  R ) ( (
invr `  R ) `  Z ) )  .+  ( Y ( .r `  R ) ( (
invr `  R ) `  Z ) ) ) )
19 eqidd 2197 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( .r `  R )  =  ( .r `  R ) )
20 eqidd 2197 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( invr `  R )  =  (
invr `  R )
)
21 dvrdir.t . . . 4  |-  ./  =  (/r
`  R )
2221a1i 9 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ./  =  (/r `  R ) )
23 ringgrp 13633 . . . . 5  |-  ( R  e.  Ring  ->  R  e. 
Grp )
2423adantr 276 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  R  e.  Grp )
254, 15, 24, 2, 3grpcld 13216 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( X  .+  Y )  e.  B
)
265, 19, 7, 20, 22, 1, 25, 10dvrvald 13766 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( X  .+  Y )  ./  Z )  =  ( ( X  .+  Y
) ( .r `  R ) ( (
invr `  R ) `  Z ) ) )
275, 19, 7, 20, 22, 1, 2, 10dvrvald 13766 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( X  ./  Z )  =  ( X ( .r `  R ) ( (
invr `  R ) `  Z ) ) )
285, 19, 7, 20, 22, 1, 3, 10dvrvald 13766 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( Y  ./  Z )  =  ( Y ( .r `  R ) ( (
invr `  R ) `  Z ) ) )
2927, 28oveq12d 5943 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( X  ./  Z )  .+  ( Y  ./  Z ) )  =  ( ( X ( .r `  R ) ( (
invr `  R ) `  Z ) )  .+  ( Y ( .r `  R ) ( (
invr `  R ) `  Z ) ) ) )
3018, 26, 293eqtr4d 2239 1  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( X  .+  Y )  ./  Z )  =  ( ( X  ./  Z
)  .+  ( Y  ./  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780   .rcmulr 12781   Grpcgrp 13202  SRingcsrg 13595   Ringcrg 13628  Unitcui 13719   invrcinvr 13752  /rcdvr 13763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-tpos 6312  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-cmn 13492  df-abl 13493  df-mgp 13553  df-ur 13592  df-srg 13596  df-ring 13630  df-oppr 13700  df-dvdsr 13721  df-unit 13722  df-invr 13753  df-dvr 13764
This theorem is referenced by:  lringuplu  13828
  Copyright terms: Public domain W3C validator