ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringnegl Unicode version

Theorem ringnegl 13846
Description: Negation in a ring is the same as left multiplication by -1. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringnegl.b  |-  B  =  ( Base `  R
)
ringnegl.t  |-  .x.  =  ( .r `  R )
ringnegl.u  |-  .1.  =  ( 1r `  R )
ringnegl.n  |-  N  =  ( invg `  R )
ringnegl.r  |-  ( ph  ->  R  e.  Ring )
ringnegl.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
ringnegl  |-  ( ph  ->  ( ( N `  .1.  )  .x.  X )  =  ( N `  X ) )

Proof of Theorem ringnegl
StepHypRef Expression
1 ringnegl.r . . . . 5  |-  ( ph  ->  R  e.  Ring )
2 ringnegl.b . . . . . . 7  |-  B  =  ( Base `  R
)
3 ringnegl.u . . . . . . 7  |-  .1.  =  ( 1r `  R )
42, 3ringidcl 13815 . . . . . 6  |-  ( R  e.  Ring  ->  .1.  e.  B )
51, 4syl 14 . . . . 5  |-  ( ph  ->  .1.  e.  B )
6 ringgrp 13796 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Grp )
71, 6syl 14 . . . . . 6  |-  ( ph  ->  R  e.  Grp )
8 ringnegl.n . . . . . . 7  |-  N  =  ( invg `  R )
92, 8grpinvcl 13413 . . . . . 6  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  -> 
( N `  .1.  )  e.  B )
107, 5, 9syl2anc 411 . . . . 5  |-  ( ph  ->  ( N `  .1.  )  e.  B )
11 ringnegl.x . . . . 5  |-  ( ph  ->  X  e.  B )
12 eqid 2205 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  R )
13 ringnegl.t . . . . . 6  |-  .x.  =  ( .r `  R )
142, 12, 13ringdir 13814 . . . . 5  |-  ( ( R  e.  Ring  /\  (  .1.  e.  B  /\  ( N `  .1.  )  e.  B  /\  X  e.  B ) )  -> 
( (  .1.  ( +g  `  R ) ( N `  .1.  )
)  .x.  X )  =  ( (  .1. 
.x.  X ) ( +g  `  R ) ( ( N `  .1.  )  .x.  X ) ) )
151, 5, 10, 11, 14syl13anc 1252 . . . 4  |-  ( ph  ->  ( (  .1.  ( +g  `  R ) ( N `  .1.  )
)  .x.  X )  =  ( (  .1. 
.x.  X ) ( +g  `  R ) ( ( N `  .1.  )  .x.  X ) ) )
16 eqid 2205 . . . . . . . 8  |-  ( 0g
`  R )  =  ( 0g `  R
)
172, 12, 16, 8grprinv 13416 . . . . . . 7  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  -> 
(  .1.  ( +g  `  R ) ( N `
 .1.  ) )  =  ( 0g `  R ) )
187, 5, 17syl2anc 411 . . . . . 6  |-  ( ph  ->  (  .1.  ( +g  `  R ) ( N `
 .1.  ) )  =  ( 0g `  R ) )
1918oveq1d 5961 . . . . 5  |-  ( ph  ->  ( (  .1.  ( +g  `  R ) ( N `  .1.  )
)  .x.  X )  =  ( ( 0g
`  R )  .x.  X ) )
202, 13, 16ringlz 13838 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( 0g `  R
)  .x.  X )  =  ( 0g `  R ) )
211, 11, 20syl2anc 411 . . . . 5  |-  ( ph  ->  ( ( 0g `  R )  .x.  X
)  =  ( 0g
`  R ) )
2219, 21eqtrd 2238 . . . 4  |-  ( ph  ->  ( (  .1.  ( +g  `  R ) ( N `  .1.  )
)  .x.  X )  =  ( 0g `  R ) )
232, 13, 3ringlidm 13818 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .1.  .x.  X )  =  X )
241, 11, 23syl2anc 411 . . . . 5  |-  ( ph  ->  (  .1.  .x.  X
)  =  X )
2524oveq1d 5961 . . . 4  |-  ( ph  ->  ( (  .1.  .x.  X ) ( +g  `  R ) ( ( N `  .1.  )  .x.  X ) )  =  ( X ( +g  `  R ) ( ( N `  .1.  )  .x.  X ) ) )
2615, 22, 253eqtr3rd 2247 . . 3  |-  ( ph  ->  ( X ( +g  `  R ) ( ( N `  .1.  )  .x.  X ) )  =  ( 0g `  R
) )
272, 13ringcl 13808 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N `  .1.  )  e.  B  /\  X  e.  B )  ->  (
( N `  .1.  )  .x.  X )  e.  B )
281, 10, 11, 27syl3anc 1250 . . . 4  |-  ( ph  ->  ( ( N `  .1.  )  .x.  X )  e.  B )
292, 12, 16, 8grpinvid1 13417 . . . 4  |-  ( ( R  e.  Grp  /\  X  e.  B  /\  ( ( N `  .1.  )  .x.  X )  e.  B )  -> 
( ( N `  X )  =  ( ( N `  .1.  )  .x.  X )  <->  ( X
( +g  `  R ) ( ( N `  .1.  )  .x.  X ) )  =  ( 0g
`  R ) ) )
307, 11, 28, 29syl3anc 1250 . . 3  |-  ( ph  ->  ( ( N `  X )  =  ( ( N `  .1.  )  .x.  X )  <->  ( X
( +g  `  R ) ( ( N `  .1.  )  .x.  X ) )  =  ( 0g
`  R ) ) )
3126, 30mpbird 167 . 2  |-  ( ph  ->  ( N `  X
)  =  ( ( N `  .1.  )  .x.  X ) )
3231eqcomd 2211 1  |-  ( ph  ->  ( ( N `  .1.  )  .x.  X )  =  ( N `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176   ` cfv 5272  (class class class)co 5946   Basecbs 12865   +g cplusg 12942   .rcmulr 12943   0gc0g 13121   Grpcgrp 13365   invgcminusg 13366   1rcur 13754   Ringcrg 13791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-pre-ltirr 8039  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-ltxr 8114  df-inn 9039  df-2 9097  df-3 9098  df-ndx 12868  df-slot 12869  df-base 12871  df-sets 12872  df-plusg 12955  df-mulr 12956  df-0g 13123  df-mgm 13221  df-sgrp 13267  df-mnd 13282  df-grp 13368  df-minusg 13369  df-mgp 13716  df-ur 13755  df-ring 13793
This theorem is referenced by:  ringmneg1  13848  dvdsrneg  13898  lmodvsneg  14126  lmodsubvs  14138  lmodsubdi  14139  lmodsubdir  14140
  Copyright terms: Public domain W3C validator