Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ringlz | Unicode version |
Description: The zero of a unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) |
Ref | Expression |
---|---|
rngz.b | |
rngz.t | |
rngz.z |
Ref | Expression |
---|---|
ringlz |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringgrp 12977 | . . . . . 6 | |
2 | rngz.b | . . . . . . 7 | |
3 | rngz.z | . . . . . . 7 | |
4 | 2, 3 | grpidcl 12764 | . . . . . 6 |
5 | eqid 2175 | . . . . . . 7 | |
6 | 2, 5, 3 | grplid 12766 | . . . . . 6 |
7 | 1, 4, 6 | syl2anc2 412 | . . . . 5 |
8 | 7 | adantr 276 | . . . 4 |
9 | 8 | oveq1d 5880 | . . 3 |
10 | 1, 4 | syl 14 | . . . . . 6 |
11 | 10 | adantr 276 | . . . . 5 |
12 | simpr 110 | . . . . 5 | |
13 | 11, 11, 12 | 3jca 1177 | . . . 4 |
14 | rngz.t | . . . . 5 | |
15 | 2, 5, 14 | ringdir 12995 | . . . 4 |
16 | 13, 15 | syldan 282 | . . 3 |
17 | 1 | adantr 276 | . . . 4 |
18 | simpl 109 | . . . . 5 | |
19 | 2, 14 | ringcl 12989 | . . . . 5 |
20 | 18, 11, 12, 19 | syl3anc 1238 | . . . 4 |
21 | 2, 5, 3 | grprid 12767 | . . . . 5 |
22 | 21 | eqcomd 2181 | . . . 4 |
23 | 17, 20, 22 | syl2anc 411 | . . 3 |
24 | 9, 16, 23 | 3eqtr3d 2216 | . 2 |
25 | 2, 5 | grplcan 12791 | . . 3 |
26 | 17, 20, 11, 20, 25 | syl13anc 1240 | . 2 |
27 | 24, 26 | mpbid 147 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 w3a 978 wceq 1353 wcel 2146 cfv 5208 (class class class)co 5865 cbs 12427 cplusg 12491 cmulr 12492 c0g 12625 cgrp 12737 crg 12972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-pre-ltirr 7898 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-ltxr 7971 df-inn 8891 df-2 8949 df-3 8950 df-ndx 12430 df-slot 12431 df-base 12433 df-sets 12434 df-plusg 12504 df-mulr 12505 df-0g 12627 df-mgm 12639 df-sgrp 12672 df-mnd 12682 df-grp 12740 df-minusg 12741 df-mgp 12926 df-ring 12974 |
This theorem is referenced by: ringsrg 13016 ring1eq0 13017 ringnegl 13020 mulgass2 13027 |
Copyright terms: Public domain | W3C validator |