ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringsubdir Unicode version

Theorem ringsubdir 13553
Description: Ring multiplication distributes over subtraction. (subdir 8405 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringsubdi.b  |-  B  =  ( Base `  R
)
ringsubdi.t  |-  .x.  =  ( .r `  R )
ringsubdi.m  |-  .-  =  ( -g `  R )
ringsubdi.r  |-  ( ph  ->  R  e.  Ring )
ringsubdi.x  |-  ( ph  ->  X  e.  B )
ringsubdi.y  |-  ( ph  ->  Y  e.  B )
ringsubdi.z  |-  ( ph  ->  Z  e.  B )
Assertion
Ref Expression
ringsubdir  |-  ( ph  ->  ( ( X  .-  Y )  .x.  Z
)  =  ( ( X  .x.  Z ) 
.-  ( Y  .x.  Z ) ) )

Proof of Theorem ringsubdir
StepHypRef Expression
1 ringsubdi.r . . . 4  |-  ( ph  ->  R  e.  Ring )
2 ringsubdi.x . . . 4  |-  ( ph  ->  X  e.  B )
3 ringgrp 13497 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Grp )
41, 3syl 14 . . . . 5  |-  ( ph  ->  R  e.  Grp )
5 ringsubdi.y . . . . 5  |-  ( ph  ->  Y  e.  B )
6 ringsubdi.b . . . . . 6  |-  B  =  ( Base `  R
)
7 eqid 2193 . . . . . 6  |-  ( invg `  R )  =  ( invg `  R )
86, 7grpinvcl 13120 . . . . 5  |-  ( ( R  e.  Grp  /\  Y  e.  B )  ->  ( ( invg `  R ) `  Y
)  e.  B )
94, 5, 8syl2anc 411 . . . 4  |-  ( ph  ->  ( ( invg `  R ) `  Y
)  e.  B )
10 ringsubdi.z . . . 4  |-  ( ph  ->  Z  e.  B )
11 eqid 2193 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
12 ringsubdi.t . . . . 5  |-  .x.  =  ( .r `  R )
136, 11, 12ringdir 13515 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  ( ( invg `  R ) `  Y
)  e.  B  /\  Z  e.  B )
)  ->  ( ( X ( +g  `  R
) ( ( invg `  R ) `
 Y ) ) 
.x.  Z )  =  ( ( X  .x.  Z ) ( +g  `  R ) ( ( ( invg `  R ) `  Y
)  .x.  Z )
) )
141, 2, 9, 10, 13syl13anc 1251 . . 3  |-  ( ph  ->  ( ( X ( +g  `  R ) ( ( invg `  R ) `  Y
) )  .x.  Z
)  =  ( ( X  .x.  Z ) ( +g  `  R
) ( ( ( invg `  R
) `  Y )  .x.  Z ) ) )
156, 12, 7, 1, 5, 10ringmneg1 13549 . . . 4  |-  ( ph  ->  ( ( ( invg `  R ) `
 Y )  .x.  Z )  =  ( ( invg `  R ) `  ( Y  .x.  Z ) ) )
1615oveq2d 5934 . . 3  |-  ( ph  ->  ( ( X  .x.  Z ) ( +g  `  R ) ( ( ( invg `  R ) `  Y
)  .x.  Z )
)  =  ( ( X  .x.  Z ) ( +g  `  R
) ( ( invg `  R ) `
 ( Y  .x.  Z ) ) ) )
1714, 16eqtrd 2226 . 2  |-  ( ph  ->  ( ( X ( +g  `  R ) ( ( invg `  R ) `  Y
) )  .x.  Z
)  =  ( ( X  .x.  Z ) ( +g  `  R
) ( ( invg `  R ) `
 ( Y  .x.  Z ) ) ) )
18 ringsubdi.m . . . . 5  |-  .-  =  ( -g `  R )
196, 11, 7, 18grpsubval 13118 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  =  ( X ( +g  `  R
) ( ( invg `  R ) `
 Y ) ) )
202, 5, 19syl2anc 411 . . 3  |-  ( ph  ->  ( X  .-  Y
)  =  ( X ( +g  `  R
) ( ( invg `  R ) `
 Y ) ) )
2120oveq1d 5933 . 2  |-  ( ph  ->  ( ( X  .-  Y )  .x.  Z
)  =  ( ( X ( +g  `  R
) ( ( invg `  R ) `
 Y ) ) 
.x.  Z ) )
226, 12ringcl 13509 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .x.  Z )  e.  B )
231, 2, 10, 22syl3anc 1249 . . 3  |-  ( ph  ->  ( X  .x.  Z
)  e.  B )
246, 12ringcl 13509 . . . 4  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  .x.  Z )  e.  B )
251, 5, 10, 24syl3anc 1249 . . 3  |-  ( ph  ->  ( Y  .x.  Z
)  e.  B )
266, 11, 7, 18grpsubval 13118 . . 3  |-  ( ( ( X  .x.  Z
)  e.  B  /\  ( Y  .x.  Z )  e.  B )  -> 
( ( X  .x.  Z )  .-  ( Y  .x.  Z ) )  =  ( ( X 
.x.  Z ) ( +g  `  R ) ( ( invg `  R ) `  ( Y  .x.  Z ) ) ) )
2723, 25, 26syl2anc 411 . 2  |-  ( ph  ->  ( ( X  .x.  Z )  .-  ( Y  .x.  Z ) )  =  ( ( X 
.x.  Z ) ( +g  `  R ) ( ( invg `  R ) `  ( Y  .x.  Z ) ) ) )
2817, 21, 273eqtr4d 2236 1  |-  ( ph  ->  ( ( X  .-  Y )  .x.  Z
)  =  ( ( X  .x.  Z ) 
.-  ( Y  .x.  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   .rcmulr 12696   Grpcgrp 13072   invgcminusg 13073   -gcsg 13074   Ringcrg 13492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-sbg 13077  df-mgp 13417  df-ur 13456  df-ring 13494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator