ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemp1rp Unicode version

Theorem resqrexlemp1rp 11150
Description: Lemma for resqrex 11170. Applying the recursion rule yields a positive real (expressed in a way that will help apply seqf 10535 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
Hypotheses
Ref Expression
resqrexlem1arp.a  |-  ( ph  ->  A  e.  RR )
resqrexlem1arp.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemp1rp  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  ( B ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
) )  /  2
) ) C )  e.  RR+ )
Distinct variable groups:    y, A, z    ph, y, z    y, B, z    y, C, z

Proof of Theorem resqrexlemp1rp
StepHypRef Expression
1 eqidd 2194 . . 3  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  (
y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) )  =  ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
) )  /  2
) ) )
2 id 19 . . . . . 6  |-  ( y  =  B  ->  y  =  B )
3 oveq2 5926 . . . . . 6  |-  ( y  =  B  ->  ( A  /  y )  =  ( A  /  B
) )
42, 3oveq12d 5936 . . . . 5  |-  ( y  =  B  ->  (
y  +  ( A  /  y ) )  =  ( B  +  ( A  /  B
) ) )
54oveq1d 5933 . . . 4  |-  ( y  =  B  ->  (
( y  +  ( A  /  y ) )  /  2 )  =  ( ( B  +  ( A  /  B ) )  / 
2 ) )
65ad2antrl 490 . . 3  |-  ( ( ( ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  /\  ( y  =  B  /\  z  =  C ) )  ->  (
( y  +  ( A  /  y ) )  /  2 )  =  ( ( B  +  ( A  /  B ) )  / 
2 ) )
7 simprl 529 . . 3  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  B  e.  RR+ )
8 simprr 531 . . 3  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  C  e.  RR+ )
97rpred 9762 . . . . 5  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  B  e.  RR )
10 resqrexlem1arp.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
1110adantr 276 . . . . . 6  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  A  e.  RR )
1211, 7rerpdivcld 9794 . . . . 5  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  ( A  /  B )  e.  RR )
139, 12readdcld 8049 . . . 4  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  ( B  +  ( A  /  B ) )  e.  RR )
1413rehalfcld 9229 . . 3  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  (
( B  +  ( A  /  B ) )  /  2 )  e.  RR )
151, 6, 7, 8, 14ovmpod 6046 . 2  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  ( B ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
) )  /  2
) ) C )  =  ( ( B  +  ( A  /  B ) )  / 
2 ) )
167rpgt0d 9765 . . . . 5  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  0  <  B )
17 resqrexlem1arp.agt0 . . . . . . 7  |-  ( ph  ->  0  <_  A )
1817adantr 276 . . . . . 6  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  0  <_  A )
1911, 7, 18divge0d 9803 . . . . 5  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  0  <_  ( A  /  B
) )
20 addgtge0 8469 . . . . 5  |-  ( ( ( B  e.  RR  /\  ( A  /  B
)  e.  RR )  /\  ( 0  < 
B  /\  0  <_  ( A  /  B ) ) )  ->  0  <  ( B  +  ( A  /  B ) ) )
219, 12, 16, 19, 20syl22anc 1250 . . . 4  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  0  <  ( B  +  ( A  /  B ) ) )
2213, 21elrpd 9759 . . 3  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  ( B  +  ( A  /  B ) )  e.  RR+ )
2322rphalfcld 9775 . 2  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  (
( B  +  ( A  /  B ) )  /  2 )  e.  RR+ )
2415, 23eqeltrd 2270 1  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  ( B ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
) )  /  2
) ) C )  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   class class class wbr 4029  (class class class)co 5918    e. cmpo 5920   RRcr 7871   0cc0 7872    + caddc 7875    < clt 8054    <_ cle 8055    / cdiv 8691   2c2 9033   RR+crp 9719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-2 9041  df-rp 9720
This theorem is referenced by:  resqrexlemf  11151  resqrexlemf1  11152  resqrexlemfp1  11153
  Copyright terms: Public domain W3C validator