ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemp1rp Unicode version

Theorem resqrexlemp1rp 11432
Description: Lemma for resqrex 11452. Applying the recursion rule yields a positive real (expressed in a way that will help apply seqf 10646 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
Hypotheses
Ref Expression
resqrexlem1arp.a  |-  ( ph  ->  A  e.  RR )
resqrexlem1arp.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemp1rp  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  ( B ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
) )  /  2
) ) C )  e.  RR+ )
Distinct variable groups:    y, A, z    ph, y, z    y, B, z    y, C, z

Proof of Theorem resqrexlemp1rp
StepHypRef Expression
1 eqidd 2208 . . 3  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  (
y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) )  =  ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
) )  /  2
) ) )
2 id 19 . . . . . 6  |-  ( y  =  B  ->  y  =  B )
3 oveq2 5975 . . . . . 6  |-  ( y  =  B  ->  ( A  /  y )  =  ( A  /  B
) )
42, 3oveq12d 5985 . . . . 5  |-  ( y  =  B  ->  (
y  +  ( A  /  y ) )  =  ( B  +  ( A  /  B
) ) )
54oveq1d 5982 . . . 4  |-  ( y  =  B  ->  (
( y  +  ( A  /  y ) )  /  2 )  =  ( ( B  +  ( A  /  B ) )  / 
2 ) )
65ad2antrl 490 . . 3  |-  ( ( ( ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  /\  ( y  =  B  /\  z  =  C ) )  ->  (
( y  +  ( A  /  y ) )  /  2 )  =  ( ( B  +  ( A  /  B ) )  / 
2 ) )
7 simprl 529 . . 3  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  B  e.  RR+ )
8 simprr 531 . . 3  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  C  e.  RR+ )
97rpred 9853 . . . . 5  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  B  e.  RR )
10 resqrexlem1arp.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
1110adantr 276 . . . . . 6  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  A  e.  RR )
1211, 7rerpdivcld 9885 . . . . 5  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  ( A  /  B )  e.  RR )
139, 12readdcld 8137 . . . 4  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  ( B  +  ( A  /  B ) )  e.  RR )
1413rehalfcld 9319 . . 3  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  (
( B  +  ( A  /  B ) )  /  2 )  e.  RR )
151, 6, 7, 8, 14ovmpod 6096 . 2  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  ( B ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
) )  /  2
) ) C )  =  ( ( B  +  ( A  /  B ) )  / 
2 ) )
167rpgt0d 9856 . . . . 5  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  0  <  B )
17 resqrexlem1arp.agt0 . . . . . . 7  |-  ( ph  ->  0  <_  A )
1817adantr 276 . . . . . 6  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  0  <_  A )
1911, 7, 18divge0d 9894 . . . . 5  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  0  <_  ( A  /  B
) )
20 addgtge0 8558 . . . . 5  |-  ( ( ( B  e.  RR  /\  ( A  /  B
)  e.  RR )  /\  ( 0  < 
B  /\  0  <_  ( A  /  B ) ) )  ->  0  <  ( B  +  ( A  /  B ) ) )
219, 12, 16, 19, 20syl22anc 1251 . . . 4  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  0  <  ( B  +  ( A  /  B ) ) )
2213, 21elrpd 9850 . . 3  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  ( B  +  ( A  /  B ) )  e.  RR+ )
2322rphalfcld 9866 . 2  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  (
( B  +  ( A  /  B ) )  /  2 )  e.  RR+ )
2415, 23eqeltrd 2284 1  |-  ( (
ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  ( B ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
) )  /  2
) ) C )  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   class class class wbr 4059  (class class class)co 5967    e. cmpo 5969   RRcr 7959   0cc0 7960    + caddc 7963    < clt 8142    <_ cle 8143    / cdiv 8780   2c2 9122   RR+crp 9810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-2 9130  df-rp 9811
This theorem is referenced by:  resqrexlemf  11433  resqrexlemf1  11434  resqrexlemfp1  11435
  Copyright terms: Public domain W3C validator