ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnesq Unicode version

Theorem nnesq 10736
Description: A positive integer is even iff its square is even. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
nnesq  |-  ( N  e.  NN  ->  (
( N  /  2
)  e.  NN  <->  ( ( N ^ 2 )  / 
2 )  e.  NN ) )

Proof of Theorem nnesq
StepHypRef Expression
1 nnz 9342 . . . 4  |-  ( N  e.  NN  ->  N  e.  ZZ )
2 zesq 10735 . . . 4  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  <->  ( ( N ^ 2 )  / 
2 )  e.  ZZ ) )
31, 2syl 14 . . 3  |-  ( N  e.  NN  ->  (
( N  /  2
)  e.  ZZ  <->  ( ( N ^ 2 )  / 
2 )  e.  ZZ ) )
4 nnrp 9735 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  RR+ )
54rphalfcld 9781 . . . . 5  |-  ( N  e.  NN  ->  ( N  /  2 )  e.  RR+ )
65rpgt0d 9771 . . . 4  |-  ( N  e.  NN  ->  0  <  ( N  /  2
) )
7 nnsqcl 10686 . . . . . . 7  |-  ( N  e.  NN  ->  ( N ^ 2 )  e.  NN )
87nnrpd 9766 . . . . . 6  |-  ( N  e.  NN  ->  ( N ^ 2 )  e.  RR+ )
98rphalfcld 9781 . . . . 5  |-  ( N  e.  NN  ->  (
( N ^ 2 )  /  2 )  e.  RR+ )
109rpgt0d 9771 . . . 4  |-  ( N  e.  NN  ->  0  <  ( ( N ^
2 )  /  2
) )
116, 102thd 175 . . 3  |-  ( N  e.  NN  ->  (
0  <  ( N  /  2 )  <->  0  <  ( ( N ^ 2 )  /  2 ) ) )
123, 11anbi12d 473 . 2  |-  ( N  e.  NN  ->  (
( ( N  / 
2 )  e.  ZZ  /\  0  <  ( N  /  2 ) )  <-> 
( ( ( N ^ 2 )  / 
2 )  e.  ZZ  /\  0  <  ( ( N ^ 2 )  /  2 ) ) ) )
13 elnnz 9333 . 2  |-  ( ( N  /  2 )  e.  NN  <->  ( ( N  /  2 )  e.  ZZ  /\  0  < 
( N  /  2
) ) )
14 elnnz 9333 . 2  |-  ( ( ( N ^ 2 )  /  2 )  e.  NN  <->  ( (
( N ^ 2 )  /  2 )  e.  ZZ  /\  0  <  ( ( N ^
2 )  /  2
) ) )
1512, 13, 143bitr4g 223 1  |-  ( N  e.  NN  ->  (
( N  /  2
)  e.  NN  <->  ( ( N ^ 2 )  / 
2 )  e.  NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   0cc0 7877    < clt 8059    / cdiv 8696   NNcn 8987   2c2 9038   ZZcz 9323   ^cexp 10615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-mulrcl 7976  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-precex 7987  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993  ax-pre-mulgt0 7994  ax-pre-mulext 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-reap 8599  df-ap 8606  df-div 8697  df-inn 8988  df-2 9046  df-n0 9247  df-z 9324  df-uz 9599  df-rp 9726  df-seqfrec 10525  df-exp 10616
This theorem is referenced by:  sqrt2irrlem  12305
  Copyright terms: Public domain W3C validator