ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnesq Unicode version

Theorem nnesq 10438
Description: A positive integer is even iff its square is even. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
nnesq  |-  ( N  e.  NN  ->  (
( N  /  2
)  e.  NN  <->  ( ( N ^ 2 )  / 
2 )  e.  NN ) )

Proof of Theorem nnesq
StepHypRef Expression
1 nnz 9093 . . . 4  |-  ( N  e.  NN  ->  N  e.  ZZ )
2 zesq 10437 . . . 4  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  <->  ( ( N ^ 2 )  / 
2 )  e.  ZZ ) )
31, 2syl 14 . . 3  |-  ( N  e.  NN  ->  (
( N  /  2
)  e.  ZZ  <->  ( ( N ^ 2 )  / 
2 )  e.  ZZ ) )
4 nnrp 9476 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  RR+ )
54rphalfcld 9522 . . . . 5  |-  ( N  e.  NN  ->  ( N  /  2 )  e.  RR+ )
65rpgt0d 9512 . . . 4  |-  ( N  e.  NN  ->  0  <  ( N  /  2
) )
7 nnsqcl 10389 . . . . . . 7  |-  ( N  e.  NN  ->  ( N ^ 2 )  e.  NN )
87nnrpd 9507 . . . . . 6  |-  ( N  e.  NN  ->  ( N ^ 2 )  e.  RR+ )
98rphalfcld 9522 . . . . 5  |-  ( N  e.  NN  ->  (
( N ^ 2 )  /  2 )  e.  RR+ )
109rpgt0d 9512 . . . 4  |-  ( N  e.  NN  ->  0  <  ( ( N ^
2 )  /  2
) )
116, 102thd 174 . . 3  |-  ( N  e.  NN  ->  (
0  <  ( N  /  2 )  <->  0  <  ( ( N ^ 2 )  /  2 ) ) )
123, 11anbi12d 465 . 2  |-  ( N  e.  NN  ->  (
( ( N  / 
2 )  e.  ZZ  /\  0  <  ( N  /  2 ) )  <-> 
( ( ( N ^ 2 )  / 
2 )  e.  ZZ  /\  0  <  ( ( N ^ 2 )  /  2 ) ) ) )
13 elnnz 9084 . 2  |-  ( ( N  /  2 )  e.  NN  <->  ( ( N  /  2 )  e.  ZZ  /\  0  < 
( N  /  2
) ) )
14 elnnz 9084 . 2  |-  ( ( ( N ^ 2 )  /  2 )  e.  NN  <->  ( (
( N ^ 2 )  /  2 )  e.  ZZ  /\  0  <  ( ( N ^
2 )  /  2
) ) )
1512, 13, 143bitr4g 222 1  |-  ( N  e.  NN  ->  (
( N  /  2
)  e.  NN  <->  ( ( N ^ 2 )  / 
2 )  e.  NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1481   class class class wbr 3933  (class class class)co 5778   0cc0 7640    < clt 7820    / cdiv 8452   NNcn 8740   2c2 8791   ZZcz 9074   ^cexp 10319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4047  ax-sep 4050  ax-nul 4058  ax-pow 4102  ax-pr 4135  ax-un 4359  ax-setind 4456  ax-iinf 4506  ax-cnex 7731  ax-resscn 7732  ax-1cn 7733  ax-1re 7734  ax-icn 7735  ax-addcl 7736  ax-addrcl 7737  ax-mulcl 7738  ax-mulrcl 7739  ax-addcom 7740  ax-mulcom 7741  ax-addass 7742  ax-mulass 7743  ax-distr 7744  ax-i2m1 7745  ax-0lt1 7746  ax-1rid 7747  ax-0id 7748  ax-rnegex 7749  ax-precex 7750  ax-cnre 7751  ax-pre-ltirr 7752  ax-pre-ltwlin 7753  ax-pre-lttrn 7754  ax-pre-apti 7755  ax-pre-ltadd 7756  ax-pre-mulgt0 7757  ax-pre-mulext 7758
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2689  df-sbc 2911  df-csb 3005  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-nul 3365  df-if 3476  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-int 3776  df-iun 3819  df-br 3934  df-opab 3994  df-mpt 3995  df-tr 4031  df-id 4219  df-po 4222  df-iso 4223  df-iord 4292  df-on 4294  df-ilim 4295  df-suc 4297  df-iom 4509  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-rn 4554  df-res 4555  df-ima 4556  df-iota 5092  df-fun 5129  df-fn 5130  df-f 5131  df-f1 5132  df-fo 5133  df-f1o 5134  df-fv 5135  df-riota 5734  df-ov 5781  df-oprab 5782  df-mpo 5783  df-1st 6042  df-2nd 6043  df-recs 6206  df-frec 6292  df-pnf 7822  df-mnf 7823  df-xr 7824  df-ltxr 7825  df-le 7826  df-sub 7955  df-neg 7956  df-reap 8357  df-ap 8364  df-div 8453  df-inn 8741  df-2 8799  df-n0 8998  df-z 9075  df-uz 9347  df-rp 9467  df-seqfrec 10246  df-exp 10320
This theorem is referenced by:  sqrt2irrlem  11866
  Copyright terms: Public domain W3C validator