ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2irrlem Unicode version

Theorem sqrt2irrlem 12649
Description: Lemma for sqrt2irr 12650. This is the core of the proof: - if  A  /  B  =  sqr ( 2 ), then 
A and  B are even, so  A  /  2 and  B  /  2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
sqrt2irrlem.1  |-  ( ph  ->  A  e.  ZZ )
sqrt2irrlem.2  |-  ( ph  ->  B  e.  NN )
sqrt2irrlem.3  |-  ( ph  ->  ( sqr `  2
)  =  ( A  /  B ) )
Assertion
Ref Expression
sqrt2irrlem  |-  ( ph  ->  ( ( A  / 
2 )  e.  ZZ  /\  ( B  /  2
)  e.  NN ) )

Proof of Theorem sqrt2irrlem
StepHypRef Expression
1 2re 9148 . . . . . . . . . . . 12  |-  2  e.  RR
2 0le2 9168 . . . . . . . . . . . 12  |-  0  <_  2
3 resqrtth 11508 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  0  <_  2 )  -> 
( ( sqr `  2
) ^ 2 )  =  2 )
41, 2, 3mp2an 426 . . . . . . . . . . 11  |-  ( ( sqr `  2 ) ^ 2 )  =  2
5 sqrt2irrlem.3 . . . . . . . . . . . 12  |-  ( ph  ->  ( sqr `  2
)  =  ( A  /  B ) )
65oveq1d 5989 . . . . . . . . . . 11  |-  ( ph  ->  ( ( sqr `  2
) ^ 2 )  =  ( ( A  /  B ) ^
2 ) )
74, 6eqtr3id 2256 . . . . . . . . . 10  |-  ( ph  ->  2  =  ( ( A  /  B ) ^ 2 ) )
8 sqrt2irrlem.1 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ZZ )
98zcnd 9538 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  CC )
10 sqrt2irrlem.2 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  NN )
1110nncnd 9092 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
1210nnap0d 9124 . . . . . . . . . . 11  |-  ( ph  ->  B #  0 )
139, 11, 12sqdivapd 10875 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  /  B ) ^ 2 )  =  ( ( A ^ 2 )  /  ( B ^
2 ) ) )
147, 13eqtrd 2242 . . . . . . . . 9  |-  ( ph  ->  2  =  ( ( A ^ 2 )  /  ( B ^
2 ) ) )
1514oveq1d 5989 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  ( B ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( B ^
2 ) )  x.  ( B ^ 2 ) ) )
169sqcld 10860 . . . . . . . . 9  |-  ( ph  ->  ( A ^ 2 )  e.  CC )
1710nnsqcld 10883 . . . . . . . . . 10  |-  ( ph  ->  ( B ^ 2 )  e.  NN )
1817nncnd 9092 . . . . . . . . 9  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
1917nnap0d 9124 . . . . . . . . 9  |-  ( ph  ->  ( B ^ 2 ) #  0 )
2016, 18, 19divcanap1d 8906 . . . . . . . 8  |-  ( ph  ->  ( ( ( A ^ 2 )  / 
( B ^ 2 ) )  x.  ( B ^ 2 ) )  =  ( A ^
2 ) )
2115, 20eqtrd 2242 . . . . . . 7  |-  ( ph  ->  ( 2  x.  ( B ^ 2 ) )  =  ( A ^
2 ) )
2221oveq1d 5989 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  ( B ^ 2 ) )  /  2
)  =  ( ( A ^ 2 )  /  2 ) )
23 2cnd 9151 . . . . . . 7  |-  ( ph  ->  2  e.  CC )
24 2ap0 9171 . . . . . . . 8  |-  2 #  0
2524a1i 9 . . . . . . 7  |-  ( ph  ->  2 #  0 )
2618, 23, 25divcanap3d 8910 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  ( B ^ 2 ) )  /  2
)  =  ( B ^ 2 ) )
2722, 26eqtr3d 2244 . . . . 5  |-  ( ph  ->  ( ( A ^
2 )  /  2
)  =  ( B ^ 2 ) )
2827, 17eqeltrd 2286 . . . 4  |-  ( ph  ->  ( ( A ^
2 )  /  2
)  e.  NN )
2928nnzd 9536 . . 3  |-  ( ph  ->  ( ( A ^
2 )  /  2
)  e.  ZZ )
30 zesq 10847 . . . 4  |-  ( A  e.  ZZ  ->  (
( A  /  2
)  e.  ZZ  <->  ( ( A ^ 2 )  / 
2 )  e.  ZZ ) )
318, 30syl 14 . . 3  |-  ( ph  ->  ( ( A  / 
2 )  e.  ZZ  <->  ( ( A ^ 2 )  /  2 )  e.  ZZ ) )
3229, 31mpbird 167 . 2  |-  ( ph  ->  ( A  /  2
)  e.  ZZ )
33 2cn 9149 . . . . . . . . 9  |-  2  e.  CC
3433sqvali 10808 . . . . . . . 8  |-  ( 2 ^ 2 )  =  ( 2  x.  2 )
3534oveq2i 5985 . . . . . . 7  |-  ( ( A ^ 2 )  /  ( 2 ^ 2 ) )  =  ( ( A ^
2 )  /  (
2  x.  2 ) )
369, 23, 25sqdivapd 10875 . . . . . . 7  |-  ( ph  ->  ( ( A  / 
2 ) ^ 2 )  =  ( ( A ^ 2 )  /  ( 2 ^ 2 ) ) )
3716, 23, 23, 25, 25divdivap1d 8937 . . . . . . 7  |-  ( ph  ->  ( ( ( A ^ 2 )  / 
2 )  /  2
)  =  ( ( A ^ 2 )  /  ( 2  x.  2 ) ) )
3835, 36, 373eqtr4a 2268 . . . . . 6  |-  ( ph  ->  ( ( A  / 
2 ) ^ 2 )  =  ( ( ( A ^ 2 )  /  2 )  /  2 ) )
3927oveq1d 5989 . . . . . 6  |-  ( ph  ->  ( ( ( A ^ 2 )  / 
2 )  /  2
)  =  ( ( B ^ 2 )  /  2 ) )
4038, 39eqtrd 2242 . . . . 5  |-  ( ph  ->  ( ( A  / 
2 ) ^ 2 )  =  ( ( B ^ 2 )  /  2 ) )
41 zsqcl 10799 . . . . . 6  |-  ( ( A  /  2 )  e.  ZZ  ->  (
( A  /  2
) ^ 2 )  e.  ZZ )
4232, 41syl 14 . . . . 5  |-  ( ph  ->  ( ( A  / 
2 ) ^ 2 )  e.  ZZ )
4340, 42eqeltrrd 2287 . . . 4  |-  ( ph  ->  ( ( B ^
2 )  /  2
)  e.  ZZ )
4417nnrpd 9858 . . . . . 6  |-  ( ph  ->  ( B ^ 2 )  e.  RR+ )
4544rphalfcld 9873 . . . . 5  |-  ( ph  ->  ( ( B ^
2 )  /  2
)  e.  RR+ )
4645rpgt0d 9863 . . . 4  |-  ( ph  ->  0  <  ( ( B ^ 2 )  /  2 ) )
47 elnnz 9424 . . . 4  |-  ( ( ( B ^ 2 )  /  2 )  e.  NN  <->  ( (
( B ^ 2 )  /  2 )  e.  ZZ  /\  0  <  ( ( B ^
2 )  /  2
) ) )
4843, 46, 47sylanbrc 417 . . 3  |-  ( ph  ->  ( ( B ^
2 )  /  2
)  e.  NN )
49 nnesq 10848 . . . 4  |-  ( B  e.  NN  ->  (
( B  /  2
)  e.  NN  <->  ( ( B ^ 2 )  / 
2 )  e.  NN ) )
5010, 49syl 14 . . 3  |-  ( ph  ->  ( ( B  / 
2 )  e.  NN  <->  ( ( B ^ 2 )  /  2 )  e.  NN ) )
5148, 50mpbird 167 . 2  |-  ( ph  ->  ( B  /  2
)  e.  NN )
5232, 51jca 306 1  |-  ( ph  ->  ( ( A  / 
2 )  e.  ZZ  /\  ( B  /  2
)  e.  NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1375    e. wcel 2180   class class class wbr 4062   ` cfv 5294  (class class class)co 5974   RRcr 7966   0cc0 7967    x. cmul 7972    < clt 8149    <_ cle 8150   # cap 8696    / cdiv 8787   NNcn 9078   2c2 9129   ZZcz 9414   ^cexp 10727   sqrcsqrt 11473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-rp 9818  df-seqfrec 10637  df-exp 10728  df-rsqrt 11475
This theorem is referenced by:  sqrt2irr  12650
  Copyright terms: Public domain W3C validator