ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2irrlem Unicode version

Theorem sqrt2irrlem 12093
Description: Lemma for sqrt2irr 12094. This is the core of the proof: - if  A  /  B  =  sqr ( 2 ), then 
A and  B are even, so  A  /  2 and  B  /  2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
sqrt2irrlem.1  |-  ( ph  ->  A  e.  ZZ )
sqrt2irrlem.2  |-  ( ph  ->  B  e.  NN )
sqrt2irrlem.3  |-  ( ph  ->  ( sqr `  2
)  =  ( A  /  B ) )
Assertion
Ref Expression
sqrt2irrlem  |-  ( ph  ->  ( ( A  / 
2 )  e.  ZZ  /\  ( B  /  2
)  e.  NN ) )

Proof of Theorem sqrt2irrlem
StepHypRef Expression
1 2re 8927 . . . . . . . . . . . 12  |-  2  e.  RR
2 0le2 8947 . . . . . . . . . . . 12  |-  0  <_  2
3 resqrtth 10973 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  0  <_  2 )  -> 
( ( sqr `  2
) ^ 2 )  =  2 )
41, 2, 3mp2an 423 . . . . . . . . . . 11  |-  ( ( sqr `  2 ) ^ 2 )  =  2
5 sqrt2irrlem.3 . . . . . . . . . . . 12  |-  ( ph  ->  ( sqr `  2
)  =  ( A  /  B ) )
65oveq1d 5857 . . . . . . . . . . 11  |-  ( ph  ->  ( ( sqr `  2
) ^ 2 )  =  ( ( A  /  B ) ^
2 ) )
74, 6eqtr3id 2213 . . . . . . . . . 10  |-  ( ph  ->  2  =  ( ( A  /  B ) ^ 2 ) )
8 sqrt2irrlem.1 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ZZ )
98zcnd 9314 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  CC )
10 sqrt2irrlem.2 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  NN )
1110nncnd 8871 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
1210nnap0d 8903 . . . . . . . . . . 11  |-  ( ph  ->  B #  0 )
139, 11, 12sqdivapd 10601 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  /  B ) ^ 2 )  =  ( ( A ^ 2 )  /  ( B ^
2 ) ) )
147, 13eqtrd 2198 . . . . . . . . 9  |-  ( ph  ->  2  =  ( ( A ^ 2 )  /  ( B ^
2 ) ) )
1514oveq1d 5857 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  ( B ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( B ^
2 ) )  x.  ( B ^ 2 ) ) )
169sqcld 10586 . . . . . . . . 9  |-  ( ph  ->  ( A ^ 2 )  e.  CC )
1710nnsqcld 10609 . . . . . . . . . 10  |-  ( ph  ->  ( B ^ 2 )  e.  NN )
1817nncnd 8871 . . . . . . . . 9  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
1917nnap0d 8903 . . . . . . . . 9  |-  ( ph  ->  ( B ^ 2 ) #  0 )
2016, 18, 19divcanap1d 8687 . . . . . . . 8  |-  ( ph  ->  ( ( ( A ^ 2 )  / 
( B ^ 2 ) )  x.  ( B ^ 2 ) )  =  ( A ^
2 ) )
2115, 20eqtrd 2198 . . . . . . 7  |-  ( ph  ->  ( 2  x.  ( B ^ 2 ) )  =  ( A ^
2 ) )
2221oveq1d 5857 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  ( B ^ 2 ) )  /  2
)  =  ( ( A ^ 2 )  /  2 ) )
23 2cnd 8930 . . . . . . 7  |-  ( ph  ->  2  e.  CC )
24 2ap0 8950 . . . . . . . 8  |-  2 #  0
2524a1i 9 . . . . . . 7  |-  ( ph  ->  2 #  0 )
2618, 23, 25divcanap3d 8691 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  ( B ^ 2 ) )  /  2
)  =  ( B ^ 2 ) )
2722, 26eqtr3d 2200 . . . . 5  |-  ( ph  ->  ( ( A ^
2 )  /  2
)  =  ( B ^ 2 ) )
2827, 17eqeltrd 2243 . . . 4  |-  ( ph  ->  ( ( A ^
2 )  /  2
)  e.  NN )
2928nnzd 9312 . . 3  |-  ( ph  ->  ( ( A ^
2 )  /  2
)  e.  ZZ )
30 zesq 10573 . . . 4  |-  ( A  e.  ZZ  ->  (
( A  /  2
)  e.  ZZ  <->  ( ( A ^ 2 )  / 
2 )  e.  ZZ ) )
318, 30syl 14 . . 3  |-  ( ph  ->  ( ( A  / 
2 )  e.  ZZ  <->  ( ( A ^ 2 )  /  2 )  e.  ZZ ) )
3229, 31mpbird 166 . 2  |-  ( ph  ->  ( A  /  2
)  e.  ZZ )
33 2cn 8928 . . . . . . . . 9  |-  2  e.  CC
3433sqvali 10534 . . . . . . . 8  |-  ( 2 ^ 2 )  =  ( 2  x.  2 )
3534oveq2i 5853 . . . . . . 7  |-  ( ( A ^ 2 )  /  ( 2 ^ 2 ) )  =  ( ( A ^
2 )  /  (
2  x.  2 ) )
369, 23, 25sqdivapd 10601 . . . . . . 7  |-  ( ph  ->  ( ( A  / 
2 ) ^ 2 )  =  ( ( A ^ 2 )  /  ( 2 ^ 2 ) ) )
3716, 23, 23, 25, 25divdivap1d 8718 . . . . . . 7  |-  ( ph  ->  ( ( ( A ^ 2 )  / 
2 )  /  2
)  =  ( ( A ^ 2 )  /  ( 2  x.  2 ) ) )
3835, 36, 373eqtr4a 2225 . . . . . 6  |-  ( ph  ->  ( ( A  / 
2 ) ^ 2 )  =  ( ( ( A ^ 2 )  /  2 )  /  2 ) )
3927oveq1d 5857 . . . . . 6  |-  ( ph  ->  ( ( ( A ^ 2 )  / 
2 )  /  2
)  =  ( ( B ^ 2 )  /  2 ) )
4038, 39eqtrd 2198 . . . . 5  |-  ( ph  ->  ( ( A  / 
2 ) ^ 2 )  =  ( ( B ^ 2 )  /  2 ) )
41 zsqcl 10525 . . . . . 6  |-  ( ( A  /  2 )  e.  ZZ  ->  (
( A  /  2
) ^ 2 )  e.  ZZ )
4232, 41syl 14 . . . . 5  |-  ( ph  ->  ( ( A  / 
2 ) ^ 2 )  e.  ZZ )
4340, 42eqeltrrd 2244 . . . 4  |-  ( ph  ->  ( ( B ^
2 )  /  2
)  e.  ZZ )
4417nnrpd 9630 . . . . . 6  |-  ( ph  ->  ( B ^ 2 )  e.  RR+ )
4544rphalfcld 9645 . . . . 5  |-  ( ph  ->  ( ( B ^
2 )  /  2
)  e.  RR+ )
4645rpgt0d 9635 . . . 4  |-  ( ph  ->  0  <  ( ( B ^ 2 )  /  2 ) )
47 elnnz 9201 . . . 4  |-  ( ( ( B ^ 2 )  /  2 )  e.  NN  <->  ( (
( B ^ 2 )  /  2 )  e.  ZZ  /\  0  <  ( ( B ^
2 )  /  2
) ) )
4843, 46, 47sylanbrc 414 . . 3  |-  ( ph  ->  ( ( B ^
2 )  /  2
)  e.  NN )
49 nnesq 10574 . . . 4  |-  ( B  e.  NN  ->  (
( B  /  2
)  e.  NN  <->  ( ( B ^ 2 )  / 
2 )  e.  NN ) )
5010, 49syl 14 . . 3  |-  ( ph  ->  ( ( B  / 
2 )  e.  NN  <->  ( ( B ^ 2 )  /  2 )  e.  NN ) )
5148, 50mpbird 166 . 2  |-  ( ph  ->  ( B  /  2
)  e.  NN )
5232, 51jca 304 1  |-  ( ph  ->  ( ( A  / 
2 )  e.  ZZ  /\  ( B  /  2
)  e.  NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   RRcr 7752   0cc0 7753    x. cmul 7758    < clt 7933    <_ cle 7934   # cap 8479    / cdiv 8568   NNcn 8857   2c2 8908   ZZcz 9191   ^cexp 10454   sqrcsqrt 10938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-rsqrt 10940
This theorem is referenced by:  sqrt2irr  12094
  Copyright terms: Public domain W3C validator