Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sqrt2irrlem | Unicode version |
Description: Lemma for sqrt2irr 12094. This is the core of the proof: - if , then and are even, so and are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.) |
Ref | Expression |
---|---|
sqrt2irrlem.1 | |
sqrt2irrlem.2 | |
sqrt2irrlem.3 |
Ref | Expression |
---|---|
sqrt2irrlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 8927 | . . . . . . . . . . . 12 | |
2 | 0le2 8947 | . . . . . . . . . . . 12 | |
3 | resqrtth 10973 | . . . . . . . . . . . 12 | |
4 | 1, 2, 3 | mp2an 423 | . . . . . . . . . . 11 |
5 | sqrt2irrlem.3 | . . . . . . . . . . . 12 | |
6 | 5 | oveq1d 5857 | . . . . . . . . . . 11 |
7 | 4, 6 | eqtr3id 2213 | . . . . . . . . . 10 |
8 | sqrt2irrlem.1 | . . . . . . . . . . . 12 | |
9 | 8 | zcnd 9314 | . . . . . . . . . . 11 |
10 | sqrt2irrlem.2 | . . . . . . . . . . . 12 | |
11 | 10 | nncnd 8871 | . . . . . . . . . . 11 |
12 | 10 | nnap0d 8903 | . . . . . . . . . . 11 # |
13 | 9, 11, 12 | sqdivapd 10601 | . . . . . . . . . 10 |
14 | 7, 13 | eqtrd 2198 | . . . . . . . . 9 |
15 | 14 | oveq1d 5857 | . . . . . . . 8 |
16 | 9 | sqcld 10586 | . . . . . . . . 9 |
17 | 10 | nnsqcld 10609 | . . . . . . . . . 10 |
18 | 17 | nncnd 8871 | . . . . . . . . 9 |
19 | 17 | nnap0d 8903 | . . . . . . . . 9 # |
20 | 16, 18, 19 | divcanap1d 8687 | . . . . . . . 8 |
21 | 15, 20 | eqtrd 2198 | . . . . . . 7 |
22 | 21 | oveq1d 5857 | . . . . . 6 |
23 | 2cnd 8930 | . . . . . . 7 | |
24 | 2ap0 8950 | . . . . . . . 8 # | |
25 | 24 | a1i 9 | . . . . . . 7 # |
26 | 18, 23, 25 | divcanap3d 8691 | . . . . . 6 |
27 | 22, 26 | eqtr3d 2200 | . . . . 5 |
28 | 27, 17 | eqeltrd 2243 | . . . 4 |
29 | 28 | nnzd 9312 | . . 3 |
30 | zesq 10573 | . . . 4 | |
31 | 8, 30 | syl 14 | . . 3 |
32 | 29, 31 | mpbird 166 | . 2 |
33 | 2cn 8928 | . . . . . . . . 9 | |
34 | 33 | sqvali 10534 | . . . . . . . 8 |
35 | 34 | oveq2i 5853 | . . . . . . 7 |
36 | 9, 23, 25 | sqdivapd 10601 | . . . . . . 7 |
37 | 16, 23, 23, 25, 25 | divdivap1d 8718 | . . . . . . 7 |
38 | 35, 36, 37 | 3eqtr4a 2225 | . . . . . 6 |
39 | 27 | oveq1d 5857 | . . . . . 6 |
40 | 38, 39 | eqtrd 2198 | . . . . 5 |
41 | zsqcl 10525 | . . . . . 6 | |
42 | 32, 41 | syl 14 | . . . . 5 |
43 | 40, 42 | eqeltrrd 2244 | . . . 4 |
44 | 17 | nnrpd 9630 | . . . . . 6 |
45 | 44 | rphalfcld 9645 | . . . . 5 |
46 | 45 | rpgt0d 9635 | . . . 4 |
47 | elnnz 9201 | . . . 4 | |
48 | 43, 46, 47 | sylanbrc 414 | . . 3 |
49 | nnesq 10574 | . . . 4 | |
50 | 10, 49 | syl 14 | . . 3 |
51 | 48, 50 | mpbird 166 | . 2 |
52 | 32, 51 | jca 304 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 class class class wbr 3982 cfv 5188 (class class class)co 5842 cr 7752 cc0 7753 cmul 7758 clt 7933 cle 7934 # cap 8479 cdiv 8568 cn 8857 c2 8908 cz 9191 cexp 10454 csqrt 10938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-rp 9590 df-seqfrec 10381 df-exp 10455 df-rsqrt 10940 |
This theorem is referenced by: sqrt2irr 12094 |
Copyright terms: Public domain | W3C validator |