ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2irrlem Unicode version

Theorem sqrt2irrlem 11632
Description: Lemma for sqrt2irr 11633. This is the core of the proof: - if  A  /  B  =  sqr ( 2 ), then 
A and  B are even, so  A  /  2 and  B  /  2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
sqrt2irrlem.1  |-  ( ph  ->  A  e.  ZZ )
sqrt2irrlem.2  |-  ( ph  ->  B  e.  NN )
sqrt2irrlem.3  |-  ( ph  ->  ( sqr `  2
)  =  ( A  /  B ) )
Assertion
Ref Expression
sqrt2irrlem  |-  ( ph  ->  ( ( A  / 
2 )  e.  ZZ  /\  ( B  /  2
)  e.  NN ) )

Proof of Theorem sqrt2irrlem
StepHypRef Expression
1 2re 8648 . . . . . . . . . . . 12  |-  2  e.  RR
2 0le2 8668 . . . . . . . . . . . 12  |-  0  <_  2
3 resqrtth 10643 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  0  <_  2 )  -> 
( ( sqr `  2
) ^ 2 )  =  2 )
41, 2, 3mp2an 420 . . . . . . . . . . 11  |-  ( ( sqr `  2 ) ^ 2 )  =  2
5 sqrt2irrlem.3 . . . . . . . . . . . 12  |-  ( ph  ->  ( sqr `  2
)  =  ( A  /  B ) )
65oveq1d 5721 . . . . . . . . . . 11  |-  ( ph  ->  ( ( sqr `  2
) ^ 2 )  =  ( ( A  /  B ) ^
2 ) )
74, 6syl5eqr 2146 . . . . . . . . . 10  |-  ( ph  ->  2  =  ( ( A  /  B ) ^ 2 ) )
8 sqrt2irrlem.1 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ZZ )
98zcnd 9026 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  CC )
10 sqrt2irrlem.2 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  NN )
1110nncnd 8592 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
1210nnap0d 8624 . . . . . . . . . . 11  |-  ( ph  ->  B #  0 )
139, 11, 12sqdivapd 10278 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  /  B ) ^ 2 )  =  ( ( A ^ 2 )  /  ( B ^
2 ) ) )
147, 13eqtrd 2132 . . . . . . . . 9  |-  ( ph  ->  2  =  ( ( A ^ 2 )  /  ( B ^
2 ) ) )
1514oveq1d 5721 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  ( B ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( B ^
2 ) )  x.  ( B ^ 2 ) ) )
169sqcld 10263 . . . . . . . . 9  |-  ( ph  ->  ( A ^ 2 )  e.  CC )
1710nnsqcld 10286 . . . . . . . . . 10  |-  ( ph  ->  ( B ^ 2 )  e.  NN )
1817nncnd 8592 . . . . . . . . 9  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
1917nnap0d 8624 . . . . . . . . 9  |-  ( ph  ->  ( B ^ 2 ) #  0 )
2016, 18, 19divcanap1d 8412 . . . . . . . 8  |-  ( ph  ->  ( ( ( A ^ 2 )  / 
( B ^ 2 ) )  x.  ( B ^ 2 ) )  =  ( A ^
2 ) )
2115, 20eqtrd 2132 . . . . . . 7  |-  ( ph  ->  ( 2  x.  ( B ^ 2 ) )  =  ( A ^
2 ) )
2221oveq1d 5721 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  ( B ^ 2 ) )  /  2
)  =  ( ( A ^ 2 )  /  2 ) )
23 2cnd 8651 . . . . . . 7  |-  ( ph  ->  2  e.  CC )
24 2ap0 8671 . . . . . . . 8  |-  2 #  0
2524a1i 9 . . . . . . 7  |-  ( ph  ->  2 #  0 )
2618, 23, 25divcanap3d 8416 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  ( B ^ 2 ) )  /  2
)  =  ( B ^ 2 ) )
2722, 26eqtr3d 2134 . . . . 5  |-  ( ph  ->  ( ( A ^
2 )  /  2
)  =  ( B ^ 2 ) )
2827, 17eqeltrd 2176 . . . 4  |-  ( ph  ->  ( ( A ^
2 )  /  2
)  e.  NN )
2928nnzd 9024 . . 3  |-  ( ph  ->  ( ( A ^
2 )  /  2
)  e.  ZZ )
30 zesq 10251 . . . 4  |-  ( A  e.  ZZ  ->  (
( A  /  2
)  e.  ZZ  <->  ( ( A ^ 2 )  / 
2 )  e.  ZZ ) )
318, 30syl 14 . . 3  |-  ( ph  ->  ( ( A  / 
2 )  e.  ZZ  <->  ( ( A ^ 2 )  /  2 )  e.  ZZ ) )
3229, 31mpbird 166 . 2  |-  ( ph  ->  ( A  /  2
)  e.  ZZ )
33 2cn 8649 . . . . . . . . 9  |-  2  e.  CC
3433sqvali 10213 . . . . . . . 8  |-  ( 2 ^ 2 )  =  ( 2  x.  2 )
3534oveq2i 5717 . . . . . . 7  |-  ( ( A ^ 2 )  /  ( 2 ^ 2 ) )  =  ( ( A ^
2 )  /  (
2  x.  2 ) )
369, 23, 25sqdivapd 10278 . . . . . . 7  |-  ( ph  ->  ( ( A  / 
2 ) ^ 2 )  =  ( ( A ^ 2 )  /  ( 2 ^ 2 ) ) )
3716, 23, 23, 25, 25divdivap1d 8443 . . . . . . 7  |-  ( ph  ->  ( ( ( A ^ 2 )  / 
2 )  /  2
)  =  ( ( A ^ 2 )  /  ( 2  x.  2 ) ) )
3835, 36, 373eqtr4a 2158 . . . . . 6  |-  ( ph  ->  ( ( A  / 
2 ) ^ 2 )  =  ( ( ( A ^ 2 )  /  2 )  /  2 ) )
3927oveq1d 5721 . . . . . 6  |-  ( ph  ->  ( ( ( A ^ 2 )  / 
2 )  /  2
)  =  ( ( B ^ 2 )  /  2 ) )
4038, 39eqtrd 2132 . . . . 5  |-  ( ph  ->  ( ( A  / 
2 ) ^ 2 )  =  ( ( B ^ 2 )  /  2 ) )
41 zsqcl 10204 . . . . . 6  |-  ( ( A  /  2 )  e.  ZZ  ->  (
( A  /  2
) ^ 2 )  e.  ZZ )
4232, 41syl 14 . . . . 5  |-  ( ph  ->  ( ( A  / 
2 ) ^ 2 )  e.  ZZ )
4340, 42eqeltrrd 2177 . . . 4  |-  ( ph  ->  ( ( B ^
2 )  /  2
)  e.  ZZ )
4417nnrpd 9329 . . . . . 6  |-  ( ph  ->  ( B ^ 2 )  e.  RR+ )
4544rphalfcld 9343 . . . . 5  |-  ( ph  ->  ( ( B ^
2 )  /  2
)  e.  RR+ )
4645rpgt0d 9333 . . . 4  |-  ( ph  ->  0  <  ( ( B ^ 2 )  /  2 ) )
47 elnnz 8916 . . . 4  |-  ( ( ( B ^ 2 )  /  2 )  e.  NN  <->  ( (
( B ^ 2 )  /  2 )  e.  ZZ  /\  0  <  ( ( B ^
2 )  /  2
) ) )
4843, 46, 47sylanbrc 411 . . 3  |-  ( ph  ->  ( ( B ^
2 )  /  2
)  e.  NN )
49 nnesq 10252 . . . 4  |-  ( B  e.  NN  ->  (
( B  /  2
)  e.  NN  <->  ( ( B ^ 2 )  / 
2 )  e.  NN ) )
5010, 49syl 14 . . 3  |-  ( ph  ->  ( ( B  / 
2 )  e.  NN  <->  ( ( B ^ 2 )  /  2 )  e.  NN ) )
5148, 50mpbird 166 . 2  |-  ( ph  ->  ( B  /  2
)  e.  NN )
5232, 51jca 302 1  |-  ( ph  ->  ( ( A  / 
2 )  e.  ZZ  /\  ( B  /  2
)  e.  NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1299    e. wcel 1448   class class class wbr 3875   ` cfv 5059  (class class class)co 5706   RRcr 7499   0cc0 7500    x. cmul 7505    < clt 7672    <_ cle 7673   # cap 8209    / cdiv 8293   NNcn 8578   2c2 8629   ZZcz 8906   ^cexp 10133   sqrcsqrt 10608
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614  ax-caucvg 7615
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-n0 8830  df-z 8907  df-uz 9177  df-rp 9292  df-seqfrec 10060  df-exp 10134  df-rsqrt 10610
This theorem is referenced by:  sqrt2irr  11633
  Copyright terms: Public domain W3C validator