ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemrate Unicode version

Theorem cvgratnnlemrate 11673
Description: Lemma for cvgratnn 11674. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnnlemrate.m  |-  ( ph  ->  M  e.  NN )
cvgratnnlemrate.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
cvgratnnlemrate  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) ) )  < 
( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  x.  ( A  /  ( 1  -  A ) ) )  /  M ) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    k, M

Proof of Theorem cvgratnnlemrate
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 nnuz 9628 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9344 . . . . . . 7  |-  ( ph  ->  1  e.  ZZ )
3 cvgratnn.6 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
41, 2, 3serf 10554 . . . . . 6  |-  ( ph  ->  seq 1 (  +  ,  F ) : NN --> CC )
5 cvgratnnlemrate.m . . . . . . 7  |-  ( ph  ->  M  e.  NN )
6 cvgratnnlemrate.n . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
7 eluznn 9665 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  ( ZZ>= `  M ) )  ->  N  e.  NN )
85, 6, 7syl2anc 411 . . . . . 6  |-  ( ph  ->  N  e.  NN )
94, 8ffvelcdmd 5694 . . . . 5  |-  ( ph  ->  (  seq 1 (  +  ,  F ) `
 N )  e.  CC )
104, 5ffvelcdmd 5694 . . . . 5  |-  ( ph  ->  (  seq 1 (  +  ,  F ) `
 M )  e.  CC )
119, 10subcld 8330 . . . 4  |-  ( ph  ->  ( (  seq 1
(  +  ,  F
) `  N )  -  (  seq 1
(  +  ,  F
) `  M )
)  e.  CC )
1211abscld 11325 . . 3  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) ) )  e.  RR )
13 fveq2 5554 . . . . . . 7  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
1413eleq1d 2262 . . . . . 6  |-  ( k  =  M  ->  (
( F `  k
)  e.  CC  <->  ( F `  M )  e.  CC ) )
153ralrimiva 2567 . . . . . 6  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  CC )
1614, 15, 5rspcdva 2869 . . . . 5  |-  ( ph  ->  ( F `  M
)  e.  CC )
1716abscld 11325 . . . 4  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  RR )
185nnzd 9438 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
1918peano2zd 9442 . . . . . 6  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
20 eluzelz 9601 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
216, 20syl 14 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
2219, 21fzfigd 10502 . . . . 5  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  e.  Fin )
23 cvgratnn.3 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
2423adantr 276 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  RR )
255nnred 8995 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR )
2625adantr 276 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  e.  RR )
27 peano2re 8155 . . . . . . . . 9  |-  ( M  e.  RR  ->  ( M  +  1 )  e.  RR )
2826, 27syl 14 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  +  1 )  e.  RR )
29 elfzelz 10091 . . . . . . . . . 10  |-  ( i  e.  ( ( M  +  1 ) ... N )  ->  i  e.  ZZ )
3029adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  ZZ )
3130zred 9439 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  RR )
3226lep1d 8950 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  <_  ( M  +  1 ) )
33 elfzle1 10093 . . . . . . . . 9  |-  ( i  e.  ( ( M  +  1 ) ... N )  ->  ( M  +  1 )  <_  i )
3433adantl 277 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  +  1 )  <_  i )
3526, 28, 31, 32, 34letrd 8143 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  <_  i )
36 znn0sub 9382 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  i  e.  ZZ )  ->  ( M  <_  i  <->  ( i  -  M )  e.  NN0 ) )
3718, 29, 36syl2an 289 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  <_  i  <->  ( i  -  M )  e.  NN0 ) )
3835, 37mpbid 147 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
i  -  M )  e.  NN0 )
3924, 38reexpcld 10761 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( A ^ ( i  -  M ) )  e.  RR )
4022, 39fsumrecl 11544 . . . 4  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) )  e.  RR )
4117, 40remulcld 8050 . . 3  |-  ( ph  ->  ( ( abs `  ( F `  M )
)  x.  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( A ^
( i  -  M
) ) )  e.  RR )
42 cvgratnn.4 . . . . . . . . . . 11  |-  ( ph  ->  A  <  1 )
43 cvgratnn.gt0 . . . . . . . . . . . . 13  |-  ( ph  ->  0  <  A )
4423, 43elrpd 9759 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR+ )
4544reclt1d 9776 . . . . . . . . . . 11  |-  ( ph  ->  ( A  <  1  <->  1  <  ( 1  /  A ) ) )
4642, 45mpbid 147 . . . . . . . . . 10  |-  ( ph  ->  1  <  ( 1  /  A ) )
47 1re 8018 . . . . . . . . . . 11  |-  1  e.  RR
4844rprecred 9774 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  /  A
)  e.  RR )
49 difrp 9758 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  ( 1  /  A
)  e.  RR )  ->  ( 1  < 
( 1  /  A
)  <->  ( ( 1  /  A )  - 
1 )  e.  RR+ ) )
5047, 48, 49sylancr 414 . . . . . . . . . 10  |-  ( ph  ->  ( 1  <  (
1  /  A )  <-> 
( ( 1  /  A )  -  1 )  e.  RR+ )
)
5146, 50mpbid 147 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  /  A )  -  1 )  e.  RR+ )
5251rpreccld 9773 . . . . . . . 8  |-  ( ph  ->  ( 1  /  (
( 1  /  A
)  -  1 ) )  e.  RR+ )
5352, 44rpdivcld 9780 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  e.  RR+ )
54 fveq2 5554 . . . . . . . . . . 11  |-  ( k  =  1  ->  ( F `  k )  =  ( F ` 
1 ) )
5554eleq1d 2262 . . . . . . . . . 10  |-  ( k  =  1  ->  (
( F `  k
)  e.  CC  <->  ( F `  1 )  e.  CC ) )
56 1nn 8993 . . . . . . . . . . 11  |-  1  e.  NN
5756a1i 9 . . . . . . . . . 10  |-  ( ph  ->  1  e.  NN )
5855, 15, 57rspcdva 2869 . . . . . . . . 9  |-  ( ph  ->  ( F `  1
)  e.  CC )
5958abscld 11325 . . . . . . . 8  |-  ( ph  ->  ( abs `  ( F `  1 )
)  e.  RR )
6058absge0d 11328 . . . . . . . 8  |-  ( ph  ->  0  <_  ( abs `  ( F `  1
) ) )
6159, 60ge0p1rpd 9793 . . . . . . 7  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  +  1 )  e.  RR+ )
6253, 61rpmulcld 9779 . . . . . 6  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  x.  (
( abs `  ( F `  1 )
)  +  1 ) )  e.  RR+ )
6362rpred 9762 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  x.  (
( abs `  ( F `  1 )
)  +  1 ) )  e.  RR )
6463, 5nndivred 9032 . . . 4  |-  ( ph  ->  ( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1 )
)  +  1 ) )  /  M )  e.  RR )
65 1red 8034 . . . . . . . 8  |-  ( ph  ->  1  e.  RR )
6665, 23resubcld 8400 . . . . . . 7  |-  ( ph  ->  ( 1  -  A
)  e.  RR )
6723, 65posdifd 8551 . . . . . . . 8  |-  ( ph  ->  ( A  <  1  <->  0  <  ( 1  -  A ) ) )
6842, 67mpbid 147 . . . . . . 7  |-  ( ph  ->  0  <  ( 1  -  A ) )
6966, 68elrpd 9759 . . . . . 6  |-  ( ph  ->  ( 1  -  A
)  e.  RR+ )
7044, 69rpdivcld 9780 . . . . 5  |-  ( ph  ->  ( A  /  (
1  -  A ) )  e.  RR+ )
7170rpred 9762 . . . 4  |-  ( ph  ->  ( A  /  (
1  -  A ) )  e.  RR )
7264, 71remulcld 8050 . . 3  |-  ( ph  ->  ( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  /  M
)  x.  ( A  /  ( 1  -  A ) ) )  e.  RR )
73 cvgratnn.7 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
7423, 42, 43, 3, 73, 5, 6cvgratnnlemseq 11669 . . . . 5  |-  ( ph  ->  ( (  seq 1
(  +  ,  F
) `  N )  -  (  seq 1
(  +  ,  F
) `  M )
)  =  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i ) )
7574fveq2d 5558 . . . 4  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) ) )  =  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) ) )
7623, 42, 43, 3, 73, 5, 6cvgratnnlemabsle 11670 . . . 4  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  <_  ( ( abs `  ( F `  M ) )  x. 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) ) ) )
7775, 76eqbrtrd 4051 . . 3  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) ) )  <_ 
( ( abs `  ( F `  M )
)  x.  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( A ^
( i  -  M
) ) ) )
7816absge0d 11328 . . . 4  |-  ( ph  ->  0  <_  ( abs `  ( F `  M
) ) )
7923, 42, 43, 3, 73, 5cvgratnnlemfm 11672 . . . 4  |-  ( ph  ->  ( abs `  ( F `  M )
)  <  ( (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  x.  ( ( abs `  ( F `
 1 ) )  +  1 ) )  /  M ) )
8044adantr 276 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  RR+ )
8138nn0zd 9437 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
i  -  M )  e.  ZZ )
8280, 81rpexpcld 10768 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( A ^ ( i  -  M ) )  e.  RR+ )
8382rpge0d 9766 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <_  ( A ^ (
i  -  M ) ) )
8422, 39, 83fsumge0 11602 . . . 4  |-  ( ph  ->  0  <_  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( A ^
( i  -  M
) ) )
8523, 42, 43, 3, 73, 5, 6cvgratnnlemsumlt 11671 . . . 4  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) )  <  ( A  /  ( 1  -  A ) ) )
8617, 64, 40, 71, 78, 79, 84, 85ltmul12ad 8960 . . 3  |-  ( ph  ->  ( ( abs `  ( F `  M )
)  x.  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( A ^
( i  -  M
) ) )  < 
( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  /  M
)  x.  ( A  /  ( 1  -  A ) ) ) )
8712, 41, 72, 77, 86lelttrd 8144 . 2  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) ) )  < 
( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  /  M
)  x.  ( A  /  ( 1  -  A ) ) ) )
8863recnd 8048 . . 3  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  x.  (
( abs `  ( F `  1 )
)  +  1 ) )  e.  CC )
8971recnd 8048 . . 3  |-  ( ph  ->  ( A  /  (
1  -  A ) )  e.  CC )
905nncnd 8996 . . 3  |-  ( ph  ->  M  e.  CC )
915nnap0d 9028 . . 3  |-  ( ph  ->  M #  0 )
9288, 89, 90, 91div23apd 8847 . 2  |-  ( ph  ->  ( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  x.  ( A  /  ( 1  -  A ) ) )  /  M )  =  ( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  /  M
)  x.  ( A  /  ( 1  -  A ) ) ) )
9387, 92breqtrrd 4057 1  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) ) )  < 
( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  x.  ( A  /  ( 1  -  A ) ) )  /  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   CCcc 7870   RRcr 7871   0cc0 7872   1c1 7873    + caddc 7875    x. cmul 7877    < clt 8054    <_ cle 8055    - cmin 8190    / cdiv 8691   NNcn 8982   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   RR+crp 9719   ...cfz 10074    seqcseq 10518   ^cexp 10609   abscabs 11141   sum_csu 11496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-ico 9960  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497
This theorem is referenced by:  cvgratnn  11674
  Copyright terms: Public domain W3C validator