| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cvgratnnlemrate | Unicode version | ||
| Description: Lemma for cvgratnn 12042. (Contributed by Jim Kingdon, 21-Nov-2022.) |
| Ref | Expression |
|---|---|
| cvgratnn.3 |
|
| cvgratnn.4 |
|
| cvgratnn.gt0 |
|
| cvgratnn.6 |
|
| cvgratnn.7 |
|
| cvgratnnlemrate.m |
|
| cvgratnnlemrate.n |
|
| Ref | Expression |
|---|---|
| cvgratnnlemrate |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9758 |
. . . . . . 7
| |
| 2 | 1zzd 9473 |
. . . . . . 7
| |
| 3 | cvgratnn.6 |
. . . . . . 7
| |
| 4 | 1, 2, 3 | serf 10705 |
. . . . . 6
|
| 5 | cvgratnnlemrate.m |
. . . . . . 7
| |
| 6 | cvgratnnlemrate.n |
. . . . . . 7
| |
| 7 | eluznn 9795 |
. . . . . . 7
| |
| 8 | 5, 6, 7 | syl2anc 411 |
. . . . . 6
|
| 9 | 4, 8 | ffvelcdmd 5771 |
. . . . 5
|
| 10 | 4, 5 | ffvelcdmd 5771 |
. . . . 5
|
| 11 | 9, 10 | subcld 8457 |
. . . 4
|
| 12 | 11 | abscld 11692 |
. . 3
|
| 13 | fveq2 5627 |
. . . . . . 7
| |
| 14 | 13 | eleq1d 2298 |
. . . . . 6
|
| 15 | 3 | ralrimiva 2603 |
. . . . . 6
|
| 16 | 14, 15, 5 | rspcdva 2912 |
. . . . 5
|
| 17 | 16 | abscld 11692 |
. . . 4
|
| 18 | 5 | nnzd 9568 |
. . . . . . 7
|
| 19 | 18 | peano2zd 9572 |
. . . . . 6
|
| 20 | eluzelz 9731 |
. . . . . . 7
| |
| 21 | 6, 20 | syl 14 |
. . . . . 6
|
| 22 | 19, 21 | fzfigd 10653 |
. . . . 5
|
| 23 | cvgratnn.3 |
. . . . . . 7
| |
| 24 | 23 | adantr 276 |
. . . . . 6
|
| 25 | 5 | nnred 9123 |
. . . . . . . . 9
|
| 26 | 25 | adantr 276 |
. . . . . . . 8
|
| 27 | peano2re 8282 |
. . . . . . . . 9
| |
| 28 | 26, 27 | syl 14 |
. . . . . . . 8
|
| 29 | elfzelz 10221 |
. . . . . . . . . 10
| |
| 30 | 29 | adantl 277 |
. . . . . . . . 9
|
| 31 | 30 | zred 9569 |
. . . . . . . 8
|
| 32 | 26 | lep1d 9078 |
. . . . . . . 8
|
| 33 | elfzle1 10223 |
. . . . . . . . 9
| |
| 34 | 33 | adantl 277 |
. . . . . . . 8
|
| 35 | 26, 28, 31, 32, 34 | letrd 8270 |
. . . . . . 7
|
| 36 | znn0sub 9512 |
. . . . . . . 8
| |
| 37 | 18, 29, 36 | syl2an 289 |
. . . . . . 7
|
| 38 | 35, 37 | mpbid 147 |
. . . . . 6
|
| 39 | 24, 38 | reexpcld 10912 |
. . . . 5
|
| 40 | 22, 39 | fsumrecl 11912 |
. . . 4
|
| 41 | 17, 40 | remulcld 8177 |
. . 3
|
| 42 | cvgratnn.4 |
. . . . . . . . . . 11
| |
| 43 | cvgratnn.gt0 |
. . . . . . . . . . . . 13
| |
| 44 | 23, 43 | elrpd 9889 |
. . . . . . . . . . . 12
|
| 45 | 44 | reclt1d 9906 |
. . . . . . . . . . 11
|
| 46 | 42, 45 | mpbid 147 |
. . . . . . . . . 10
|
| 47 | 1re 8145 |
. . . . . . . . . . 11
| |
| 48 | 44 | rprecred 9904 |
. . . . . . . . . . 11
|
| 49 | difrp 9888 |
. . . . . . . . . . 11
| |
| 50 | 47, 48, 49 | sylancr 414 |
. . . . . . . . . 10
|
| 51 | 46, 50 | mpbid 147 |
. . . . . . . . 9
|
| 52 | 51 | rpreccld 9903 |
. . . . . . . 8
|
| 53 | 52, 44 | rpdivcld 9910 |
. . . . . . 7
|
| 54 | fveq2 5627 |
. . . . . . . . . . 11
| |
| 55 | 54 | eleq1d 2298 |
. . . . . . . . . 10
|
| 56 | 1nn 9121 |
. . . . . . . . . . 11
| |
| 57 | 56 | a1i 9 |
. . . . . . . . . 10
|
| 58 | 55, 15, 57 | rspcdva 2912 |
. . . . . . . . 9
|
| 59 | 58 | abscld 11692 |
. . . . . . . 8
|
| 60 | 58 | absge0d 11695 |
. . . . . . . 8
|
| 61 | 59, 60 | ge0p1rpd 9923 |
. . . . . . 7
|
| 62 | 53, 61 | rpmulcld 9909 |
. . . . . 6
|
| 63 | 62 | rpred 9892 |
. . . . 5
|
| 64 | 63, 5 | nndivred 9160 |
. . . 4
|
| 65 | 1red 8161 |
. . . . . . . 8
| |
| 66 | 65, 23 | resubcld 8527 |
. . . . . . 7
|
| 67 | 23, 65 | posdifd 8679 |
. . . . . . . 8
|
| 68 | 42, 67 | mpbid 147 |
. . . . . . 7
|
| 69 | 66, 68 | elrpd 9889 |
. . . . . 6
|
| 70 | 44, 69 | rpdivcld 9910 |
. . . . 5
|
| 71 | 70 | rpred 9892 |
. . . 4
|
| 72 | 64, 71 | remulcld 8177 |
. . 3
|
| 73 | cvgratnn.7 |
. . . . . 6
| |
| 74 | 23, 42, 43, 3, 73, 5, 6 | cvgratnnlemseq 12037 |
. . . . 5
|
| 75 | 74 | fveq2d 5631 |
. . . 4
|
| 76 | 23, 42, 43, 3, 73, 5, 6 | cvgratnnlemabsle 12038 |
. . . 4
|
| 77 | 75, 76 | eqbrtrd 4105 |
. . 3
|
| 78 | 16 | absge0d 11695 |
. . . 4
|
| 79 | 23, 42, 43, 3, 73, 5 | cvgratnnlemfm 12040 |
. . . 4
|
| 80 | 44 | adantr 276 |
. . . . . . 7
|
| 81 | 38 | nn0zd 9567 |
. . . . . . 7
|
| 82 | 80, 81 | rpexpcld 10919 |
. . . . . 6
|
| 83 | 82 | rpge0d 9896 |
. . . . 5
|
| 84 | 22, 39, 83 | fsumge0 11970 |
. . . 4
|
| 85 | 23, 42, 43, 3, 73, 5, 6 | cvgratnnlemsumlt 12039 |
. . . 4
|
| 86 | 17, 64, 40, 71, 78, 79, 84, 85 | ltmul12ad 9088 |
. . 3
|
| 87 | 12, 41, 72, 77, 86 | lelttrd 8271 |
. 2
|
| 88 | 63 | recnd 8175 |
. . 3
|
| 89 | 71 | recnd 8175 |
. . 3
|
| 90 | 5 | nncnd 9124 |
. . 3
|
| 91 | 5 | nnap0d 9156 |
. . 3
|
| 92 | 88, 89, 90, 91 | div23apd 8975 |
. 2
|
| 93 | 87, 92 | breqtrrd 4111 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 ax-caucvg 8119 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-frec 6537 df-1o 6562 df-oadd 6566 df-er 6680 df-en 6888 df-dom 6889 df-fin 6890 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-n0 9370 df-z 9447 df-uz 9723 df-q 9815 df-rp 9850 df-ico 10090 df-fz 10205 df-fzo 10339 df-seqfrec 10670 df-exp 10761 df-ihash 10998 df-cj 11353 df-re 11354 df-im 11355 df-rsqrt 11509 df-abs 11510 df-clim 11790 df-sumdc 11865 |
| This theorem is referenced by: cvgratnn 12042 |
| Copyright terms: Public domain | W3C validator |