ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemrate Unicode version

Theorem cvgratnnlemrate 11874
Description: Lemma for cvgratnn 11875. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnnlemrate.m  |-  ( ph  ->  M  e.  NN )
cvgratnnlemrate.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
cvgratnnlemrate  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) ) )  < 
( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  x.  ( A  /  ( 1  -  A ) ) )  /  M ) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    k, M

Proof of Theorem cvgratnnlemrate
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 nnuz 9686 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9401 . . . . . . 7  |-  ( ph  ->  1  e.  ZZ )
3 cvgratnn.6 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
41, 2, 3serf 10630 . . . . . 6  |-  ( ph  ->  seq 1 (  +  ,  F ) : NN --> CC )
5 cvgratnnlemrate.m . . . . . . 7  |-  ( ph  ->  M  e.  NN )
6 cvgratnnlemrate.n . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
7 eluznn 9723 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  ( ZZ>= `  M ) )  ->  N  e.  NN )
85, 6, 7syl2anc 411 . . . . . 6  |-  ( ph  ->  N  e.  NN )
94, 8ffvelcdmd 5718 . . . . 5  |-  ( ph  ->  (  seq 1 (  +  ,  F ) `
 N )  e.  CC )
104, 5ffvelcdmd 5718 . . . . 5  |-  ( ph  ->  (  seq 1 (  +  ,  F ) `
 M )  e.  CC )
119, 10subcld 8385 . . . 4  |-  ( ph  ->  ( (  seq 1
(  +  ,  F
) `  N )  -  (  seq 1
(  +  ,  F
) `  M )
)  e.  CC )
1211abscld 11525 . . 3  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) ) )  e.  RR )
13 fveq2 5578 . . . . . . 7  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
1413eleq1d 2274 . . . . . 6  |-  ( k  =  M  ->  (
( F `  k
)  e.  CC  <->  ( F `  M )  e.  CC ) )
153ralrimiva 2579 . . . . . 6  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  CC )
1614, 15, 5rspcdva 2882 . . . . 5  |-  ( ph  ->  ( F `  M
)  e.  CC )
1716abscld 11525 . . . 4  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  RR )
185nnzd 9496 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
1918peano2zd 9500 . . . . . 6  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
20 eluzelz 9659 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
216, 20syl 14 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
2219, 21fzfigd 10578 . . . . 5  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  e.  Fin )
23 cvgratnn.3 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
2423adantr 276 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  RR )
255nnred 9051 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR )
2625adantr 276 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  e.  RR )
27 peano2re 8210 . . . . . . . . 9  |-  ( M  e.  RR  ->  ( M  +  1 )  e.  RR )
2826, 27syl 14 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  +  1 )  e.  RR )
29 elfzelz 10149 . . . . . . . . . 10  |-  ( i  e.  ( ( M  +  1 ) ... N )  ->  i  e.  ZZ )
3029adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  ZZ )
3130zred 9497 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  RR )
3226lep1d 9006 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  <_  ( M  +  1 ) )
33 elfzle1 10151 . . . . . . . . 9  |-  ( i  e.  ( ( M  +  1 ) ... N )  ->  ( M  +  1 )  <_  i )
3433adantl 277 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  +  1 )  <_  i )
3526, 28, 31, 32, 34letrd 8198 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  <_  i )
36 znn0sub 9440 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  i  e.  ZZ )  ->  ( M  <_  i  <->  ( i  -  M )  e.  NN0 ) )
3718, 29, 36syl2an 289 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  <_  i  <->  ( i  -  M )  e.  NN0 ) )
3835, 37mpbid 147 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
i  -  M )  e.  NN0 )
3924, 38reexpcld 10837 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( A ^ ( i  -  M ) )  e.  RR )
4022, 39fsumrecl 11745 . . . 4  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) )  e.  RR )
4117, 40remulcld 8105 . . 3  |-  ( ph  ->  ( ( abs `  ( F `  M )
)  x.  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( A ^
( i  -  M
) ) )  e.  RR )
42 cvgratnn.4 . . . . . . . . . . 11  |-  ( ph  ->  A  <  1 )
43 cvgratnn.gt0 . . . . . . . . . . . . 13  |-  ( ph  ->  0  <  A )
4423, 43elrpd 9817 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR+ )
4544reclt1d 9834 . . . . . . . . . . 11  |-  ( ph  ->  ( A  <  1  <->  1  <  ( 1  /  A ) ) )
4642, 45mpbid 147 . . . . . . . . . 10  |-  ( ph  ->  1  <  ( 1  /  A ) )
47 1re 8073 . . . . . . . . . . 11  |-  1  e.  RR
4844rprecred 9832 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  /  A
)  e.  RR )
49 difrp 9816 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  ( 1  /  A
)  e.  RR )  ->  ( 1  < 
( 1  /  A
)  <->  ( ( 1  /  A )  - 
1 )  e.  RR+ ) )
5047, 48, 49sylancr 414 . . . . . . . . . 10  |-  ( ph  ->  ( 1  <  (
1  /  A )  <-> 
( ( 1  /  A )  -  1 )  e.  RR+ )
)
5146, 50mpbid 147 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  /  A )  -  1 )  e.  RR+ )
5251rpreccld 9831 . . . . . . . 8  |-  ( ph  ->  ( 1  /  (
( 1  /  A
)  -  1 ) )  e.  RR+ )
5352, 44rpdivcld 9838 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  e.  RR+ )
54 fveq2 5578 . . . . . . . . . . 11  |-  ( k  =  1  ->  ( F `  k )  =  ( F ` 
1 ) )
5554eleq1d 2274 . . . . . . . . . 10  |-  ( k  =  1  ->  (
( F `  k
)  e.  CC  <->  ( F `  1 )  e.  CC ) )
56 1nn 9049 . . . . . . . . . . 11  |-  1  e.  NN
5756a1i 9 . . . . . . . . . 10  |-  ( ph  ->  1  e.  NN )
5855, 15, 57rspcdva 2882 . . . . . . . . 9  |-  ( ph  ->  ( F `  1
)  e.  CC )
5958abscld 11525 . . . . . . . 8  |-  ( ph  ->  ( abs `  ( F `  1 )
)  e.  RR )
6058absge0d 11528 . . . . . . . 8  |-  ( ph  ->  0  <_  ( abs `  ( F `  1
) ) )
6159, 60ge0p1rpd 9851 . . . . . . 7  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  +  1 )  e.  RR+ )
6253, 61rpmulcld 9837 . . . . . 6  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  x.  (
( abs `  ( F `  1 )
)  +  1 ) )  e.  RR+ )
6362rpred 9820 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  x.  (
( abs `  ( F `  1 )
)  +  1 ) )  e.  RR )
6463, 5nndivred 9088 . . . 4  |-  ( ph  ->  ( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1 )
)  +  1 ) )  /  M )  e.  RR )
65 1red 8089 . . . . . . . 8  |-  ( ph  ->  1  e.  RR )
6665, 23resubcld 8455 . . . . . . 7  |-  ( ph  ->  ( 1  -  A
)  e.  RR )
6723, 65posdifd 8607 . . . . . . . 8  |-  ( ph  ->  ( A  <  1  <->  0  <  ( 1  -  A ) ) )
6842, 67mpbid 147 . . . . . . 7  |-  ( ph  ->  0  <  ( 1  -  A ) )
6966, 68elrpd 9817 . . . . . 6  |-  ( ph  ->  ( 1  -  A
)  e.  RR+ )
7044, 69rpdivcld 9838 . . . . 5  |-  ( ph  ->  ( A  /  (
1  -  A ) )  e.  RR+ )
7170rpred 9820 . . . 4  |-  ( ph  ->  ( A  /  (
1  -  A ) )  e.  RR )
7264, 71remulcld 8105 . . 3  |-  ( ph  ->  ( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  /  M
)  x.  ( A  /  ( 1  -  A ) ) )  e.  RR )
73 cvgratnn.7 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
7423, 42, 43, 3, 73, 5, 6cvgratnnlemseq 11870 . . . . 5  |-  ( ph  ->  ( (  seq 1
(  +  ,  F
) `  N )  -  (  seq 1
(  +  ,  F
) `  M )
)  =  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i ) )
7574fveq2d 5582 . . . 4  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) ) )  =  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) ) )
7623, 42, 43, 3, 73, 5, 6cvgratnnlemabsle 11871 . . . 4  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  <_  ( ( abs `  ( F `  M ) )  x. 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) ) ) )
7775, 76eqbrtrd 4067 . . 3  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) ) )  <_ 
( ( abs `  ( F `  M )
)  x.  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( A ^
( i  -  M
) ) ) )
7816absge0d 11528 . . . 4  |-  ( ph  ->  0  <_  ( abs `  ( F `  M
) ) )
7923, 42, 43, 3, 73, 5cvgratnnlemfm 11873 . . . 4  |-  ( ph  ->  ( abs `  ( F `  M )
)  <  ( (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  x.  ( ( abs `  ( F `
 1 ) )  +  1 ) )  /  M ) )
8044adantr 276 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  RR+ )
8138nn0zd 9495 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
i  -  M )  e.  ZZ )
8280, 81rpexpcld 10844 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( A ^ ( i  -  M ) )  e.  RR+ )
8382rpge0d 9824 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <_  ( A ^ (
i  -  M ) ) )
8422, 39, 83fsumge0 11803 . . . 4  |-  ( ph  ->  0  <_  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( A ^
( i  -  M
) ) )
8523, 42, 43, 3, 73, 5, 6cvgratnnlemsumlt 11872 . . . 4  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) )  <  ( A  /  ( 1  -  A ) ) )
8617, 64, 40, 71, 78, 79, 84, 85ltmul12ad 9016 . . 3  |-  ( ph  ->  ( ( abs `  ( F `  M )
)  x.  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( A ^
( i  -  M
) ) )  < 
( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  /  M
)  x.  ( A  /  ( 1  -  A ) ) ) )
8712, 41, 72, 77, 86lelttrd 8199 . 2  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) ) )  < 
( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  /  M
)  x.  ( A  /  ( 1  -  A ) ) ) )
8863recnd 8103 . . 3  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  x.  (
( abs `  ( F `  1 )
)  +  1 ) )  e.  CC )
8971recnd 8103 . . 3  |-  ( ph  ->  ( A  /  (
1  -  A ) )  e.  CC )
905nncnd 9052 . . 3  |-  ( ph  ->  M  e.  CC )
915nnap0d 9084 . . 3  |-  ( ph  ->  M #  0 )
9288, 89, 90, 91div23apd 8903 . 2  |-  ( ph  ->  ( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  x.  ( A  /  ( 1  -  A ) ) )  /  M )  =  ( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  /  M
)  x.  ( A  /  ( 1  -  A ) ) ) )
9387, 92breqtrrd 4073 1  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) ) )  < 
( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  x.  ( A  /  ( 1  -  A ) ) )  /  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   class class class wbr 4045   ` cfv 5272  (class class class)co 5946   CCcc 7925   RRcr 7926   0cc0 7927   1c1 7928    + caddc 7930    x. cmul 7932    < clt 8109    <_ cle 8110    - cmin 8245    / cdiv 8747   NNcn 9038   NN0cn0 9297   ZZcz 9374   ZZ>=cuz 9650   RR+crp 9777   ...cfz 10132    seqcseq 10594   ^cexp 10685   abscabs 11341   sum_csu 11697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-frec 6479  df-1o 6504  df-oadd 6508  df-er 6622  df-en 6830  df-dom 6831  df-fin 6832  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-ico 10018  df-fz 10133  df-fzo 10267  df-seqfrec 10595  df-exp 10686  df-ihash 10923  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-clim 11623  df-sumdc 11698
This theorem is referenced by:  cvgratnn  11875
  Copyright terms: Public domain W3C validator