ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemrate Unicode version

Theorem cvgratnnlemrate 11331
Description: Lemma for cvgratnn 11332. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnnlemrate.m  |-  ( ph  ->  M  e.  NN )
cvgratnnlemrate.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
cvgratnnlemrate  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) ) )  < 
( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  x.  ( A  /  ( 1  -  A ) ) )  /  M ) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    k, M

Proof of Theorem cvgratnnlemrate
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 nnuz 9385 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9105 . . . . . . 7  |-  ( ph  ->  1  e.  ZZ )
3 cvgratnn.6 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
41, 2, 3serf 10278 . . . . . 6  |-  ( ph  ->  seq 1 (  +  ,  F ) : NN --> CC )
5 cvgratnnlemrate.m . . . . . . 7  |-  ( ph  ->  M  e.  NN )
6 cvgratnnlemrate.n . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
7 eluznn 9421 . . . . . . 7  |-  ( ( M  e.  NN  /\  N  e.  ( ZZ>= `  M ) )  ->  N  e.  NN )
85, 6, 7syl2anc 409 . . . . . 6  |-  ( ph  ->  N  e.  NN )
94, 8ffvelrnd 5564 . . . . 5  |-  ( ph  ->  (  seq 1 (  +  ,  F ) `
 N )  e.  CC )
104, 5ffvelrnd 5564 . . . . 5  |-  ( ph  ->  (  seq 1 (  +  ,  F ) `
 M )  e.  CC )
119, 10subcld 8097 . . . 4  |-  ( ph  ->  ( (  seq 1
(  +  ,  F
) `  N )  -  (  seq 1
(  +  ,  F
) `  M )
)  e.  CC )
1211abscld 10985 . . 3  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) ) )  e.  RR )
13 fveq2 5429 . . . . . . 7  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
1413eleq1d 2209 . . . . . 6  |-  ( k  =  M  ->  (
( F `  k
)  e.  CC  <->  ( F `  M )  e.  CC ) )
153ralrimiva 2508 . . . . . 6  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  CC )
1614, 15, 5rspcdva 2798 . . . . 5  |-  ( ph  ->  ( F `  M
)  e.  CC )
1716abscld 10985 . . . 4  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  RR )
185nnzd 9196 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
1918peano2zd 9200 . . . . . 6  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
20 eluzelz 9359 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
216, 20syl 14 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
2219, 21fzfigd 10235 . . . . 5  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  e.  Fin )
23 cvgratnn.3 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
2423adantr 274 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  RR )
255nnred 8757 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR )
2625adantr 274 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  e.  RR )
27 peano2re 7922 . . . . . . . . 9  |-  ( M  e.  RR  ->  ( M  +  1 )  e.  RR )
2826, 27syl 14 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  +  1 )  e.  RR )
29 elfzelz 9837 . . . . . . . . . 10  |-  ( i  e.  ( ( M  +  1 ) ... N )  ->  i  e.  ZZ )
3029adantl 275 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  ZZ )
3130zred 9197 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  RR )
3226lep1d 8713 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  <_  ( M  +  1 ) )
33 elfzle1 9838 . . . . . . . . 9  |-  ( i  e.  ( ( M  +  1 ) ... N )  ->  ( M  +  1 )  <_  i )
3433adantl 275 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  +  1 )  <_  i )
3526, 28, 31, 32, 34letrd 7910 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  <_  i )
36 znn0sub 9143 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  i  e.  ZZ )  ->  ( M  <_  i  <->  ( i  -  M )  e.  NN0 ) )
3718, 29, 36syl2an 287 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  <_  i  <->  ( i  -  M )  e.  NN0 ) )
3835, 37mpbid 146 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
i  -  M )  e.  NN0 )
3924, 38reexpcld 10472 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( A ^ ( i  -  M ) )  e.  RR )
4022, 39fsumrecl 11202 . . . 4  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) )  e.  RR )
4117, 40remulcld 7820 . . 3  |-  ( ph  ->  ( ( abs `  ( F `  M )
)  x.  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( A ^
( i  -  M
) ) )  e.  RR )
42 cvgratnn.4 . . . . . . . . . . 11  |-  ( ph  ->  A  <  1 )
43 cvgratnn.gt0 . . . . . . . . . . . . 13  |-  ( ph  ->  0  <  A )
4423, 43elrpd 9510 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR+ )
4544reclt1d 9527 . . . . . . . . . . 11  |-  ( ph  ->  ( A  <  1  <->  1  <  ( 1  /  A ) ) )
4642, 45mpbid 146 . . . . . . . . . 10  |-  ( ph  ->  1  <  ( 1  /  A ) )
47 1re 7789 . . . . . . . . . . 11  |-  1  e.  RR
4844rprecred 9525 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  /  A
)  e.  RR )
49 difrp 9509 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  ( 1  /  A
)  e.  RR )  ->  ( 1  < 
( 1  /  A
)  <->  ( ( 1  /  A )  - 
1 )  e.  RR+ ) )
5047, 48, 49sylancr 411 . . . . . . . . . 10  |-  ( ph  ->  ( 1  <  (
1  /  A )  <-> 
( ( 1  /  A )  -  1 )  e.  RR+ )
)
5146, 50mpbid 146 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  /  A )  -  1 )  e.  RR+ )
5251rpreccld 9524 . . . . . . . 8  |-  ( ph  ->  ( 1  /  (
( 1  /  A
)  -  1 ) )  e.  RR+ )
5352, 44rpdivcld 9531 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  e.  RR+ )
54 fveq2 5429 . . . . . . . . . . 11  |-  ( k  =  1  ->  ( F `  k )  =  ( F ` 
1 ) )
5554eleq1d 2209 . . . . . . . . . 10  |-  ( k  =  1  ->  (
( F `  k
)  e.  CC  <->  ( F `  1 )  e.  CC ) )
56 1nn 8755 . . . . . . . . . . 11  |-  1  e.  NN
5756a1i 9 . . . . . . . . . 10  |-  ( ph  ->  1  e.  NN )
5855, 15, 57rspcdva 2798 . . . . . . . . 9  |-  ( ph  ->  ( F `  1
)  e.  CC )
5958abscld 10985 . . . . . . . 8  |-  ( ph  ->  ( abs `  ( F `  1 )
)  e.  RR )
6058absge0d 10988 . . . . . . . 8  |-  ( ph  ->  0  <_  ( abs `  ( F `  1
) ) )
6159, 60ge0p1rpd 9544 . . . . . . 7  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  +  1 )  e.  RR+ )
6253, 61rpmulcld 9530 . . . . . 6  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  x.  (
( abs `  ( F `  1 )
)  +  1 ) )  e.  RR+ )
6362rpred 9513 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  x.  (
( abs `  ( F `  1 )
)  +  1 ) )  e.  RR )
6463, 5nndivred 8794 . . . 4  |-  ( ph  ->  ( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1 )
)  +  1 ) )  /  M )  e.  RR )
65 1red 7805 . . . . . . . 8  |-  ( ph  ->  1  e.  RR )
6665, 23resubcld 8167 . . . . . . 7  |-  ( ph  ->  ( 1  -  A
)  e.  RR )
6723, 65posdifd 8318 . . . . . . . 8  |-  ( ph  ->  ( A  <  1  <->  0  <  ( 1  -  A ) ) )
6842, 67mpbid 146 . . . . . . 7  |-  ( ph  ->  0  <  ( 1  -  A ) )
6966, 68elrpd 9510 . . . . . 6  |-  ( ph  ->  ( 1  -  A
)  e.  RR+ )
7044, 69rpdivcld 9531 . . . . 5  |-  ( ph  ->  ( A  /  (
1  -  A ) )  e.  RR+ )
7170rpred 9513 . . . 4  |-  ( ph  ->  ( A  /  (
1  -  A ) )  e.  RR )
7264, 71remulcld 7820 . . 3  |-  ( ph  ->  ( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  /  M
)  x.  ( A  /  ( 1  -  A ) ) )  e.  RR )
73 cvgratnn.7 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
7423, 42, 43, 3, 73, 5, 6cvgratnnlemseq 11327 . . . . 5  |-  ( ph  ->  ( (  seq 1
(  +  ,  F
) `  N )  -  (  seq 1
(  +  ,  F
) `  M )
)  =  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( F `  i ) )
7574fveq2d 5433 . . . 4  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) ) )  =  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) ) )
7623, 42, 43, 3, 73, 5, 6cvgratnnlemabsle 11328 . . . 4  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  <_  ( ( abs `  ( F `  M ) )  x. 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) ) ) )
7775, 76eqbrtrd 3958 . . 3  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) ) )  <_ 
( ( abs `  ( F `  M )
)  x.  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( A ^
( i  -  M
) ) ) )
7816absge0d 10988 . . . 4  |-  ( ph  ->  0  <_  ( abs `  ( F `  M
) ) )
7923, 42, 43, 3, 73, 5cvgratnnlemfm 11330 . . . 4  |-  ( ph  ->  ( abs `  ( F `  M )
)  <  ( (
( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  x.  ( ( abs `  ( F `
 1 ) )  +  1 ) )  /  M ) )
8044adantr 274 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  RR+ )
8138nn0zd 9195 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
i  -  M )  e.  ZZ )
8280, 81rpexpcld 10479 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( A ^ ( i  -  M ) )  e.  RR+ )
8382rpge0d 9517 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <_  ( A ^ (
i  -  M ) ) )
8422, 39, 83fsumge0 11260 . . . 4  |-  ( ph  ->  0  <_  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( A ^
( i  -  M
) ) )
8523, 42, 43, 3, 73, 5, 6cvgratnnlemsumlt 11329 . . . 4  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) )  <  ( A  /  ( 1  -  A ) ) )
8617, 64, 40, 71, 78, 79, 84, 85ltmul12ad 8723 . . 3  |-  ( ph  ->  ( ( abs `  ( F `  M )
)  x.  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( A ^
( i  -  M
) ) )  < 
( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  /  M
)  x.  ( A  /  ( 1  -  A ) ) ) )
8712, 41, 72, 77, 86lelttrd 7911 . 2  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) ) )  < 
( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  /  M
)  x.  ( A  /  ( 1  -  A ) ) ) )
8863recnd 7818 . . 3  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  x.  (
( abs `  ( F `  1 )
)  +  1 ) )  e.  CC )
8971recnd 7818 . . 3  |-  ( ph  ->  ( A  /  (
1  -  A ) )  e.  CC )
905nncnd 8758 . . 3  |-  ( ph  ->  M  e.  CC )
915nnap0d 8790 . . 3  |-  ( ph  ->  M #  0 )
9288, 89, 90, 91div23apd 8612 . 2  |-  ( ph  ->  ( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  x.  ( A  /  ( 1  -  A ) ) )  /  M )  =  ( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  /  M
)  x.  ( A  /  ( 1  -  A ) ) ) )
9387, 92breqtrrd 3964 1  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M
) ) )  < 
( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  x.  ( A  /  ( 1  -  A ) ) )  /  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   CCcc 7642   RRcr 7643   0cc0 7644   1c1 7645    + caddc 7647    x. cmul 7649    < clt 7824    <_ cle 7825    - cmin 7957    / cdiv 8456   NNcn 8744   NN0cn0 9001   ZZcz 9078   ZZ>=cuz 9350   RR+crp 9470   ...cfz 9821    seqcseq 10249   ^cexp 10323   abscabs 10801   sum_csu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-ico 9707  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  cvgratnn  11332
  Copyright terms: Public domain W3C validator