Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qbtwnrelemcalc | Unicode version |
Description: Lemma for qbtwnre 10213. Calculations involved in showing the constructed rational number is less than . (Contributed by Jim Kingdon, 14-Oct-2021.) |
Ref | Expression |
---|---|
qbtwnrelemcalc.m | |
qbtwnrelemcalc.n | |
qbtwnrelemcalc.a | |
qbtwnrelemcalc.b | |
qbtwnrelemcalc.lt | |
qbtwnrelemcalc.1n |
Ref | Expression |
---|---|
qbtwnrelemcalc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 8948 | . . . . 5 | |
2 | 1 | a1i 9 | . . . 4 |
3 | qbtwnrelemcalc.b | . . . . . 6 | |
4 | qbtwnrelemcalc.n | . . . . . . . 8 | |
5 | 4 | nnred 8891 | . . . . . . 7 |
6 | 2, 5 | remulcld 7950 | . . . . . 6 |
7 | 3, 6 | remulcld 7950 | . . . . 5 |
8 | qbtwnrelemcalc.a | . . . . . 6 | |
9 | 8, 6 | remulcld 7950 | . . . . 5 |
10 | 7, 9 | resubcld 8300 | . . . 4 |
11 | qbtwnrelemcalc.m | . . . . . 6 | |
12 | 11 | zred 9334 | . . . . 5 |
13 | 7, 12 | resubcld 8300 | . . . 4 |
14 | 2t1e2 9031 | . . . . . . . . 9 | |
15 | 14 | oveq1i 5863 | . . . . . . . 8 |
16 | 1cnd 7936 | . . . . . . . . 9 | |
17 | 5 | recnd 7948 | . . . . . . . . 9 |
18 | 2 | recnd 7948 | . . . . . . . . 9 |
19 | 4 | nnap0d 8924 | . . . . . . . . 9 # |
20 | 2ap0 8971 | . . . . . . . . . 10 # | |
21 | 20 | a1i 9 | . . . . . . . . 9 # |
22 | 16, 17, 18, 19, 21 | divcanap5d 8734 | . . . . . . . 8 |
23 | 15, 22 | eqtr3id 2217 | . . . . . . 7 |
24 | qbtwnrelemcalc.1n | . . . . . . 7 | |
25 | 23, 24 | eqbrtrd 4011 | . . . . . 6 |
26 | 3, 8 | resubcld 8300 | . . . . . . 7 |
27 | 2rp 9615 | . . . . . . . . 9 | |
28 | 27 | a1i 9 | . . . . . . . 8 |
29 | 4 | nnrpd 9651 | . . . . . . . 8 |
30 | 28, 29 | rpmulcld 9670 | . . . . . . 7 |
31 | 2, 26, 30 | ltdivmul2d 9706 | . . . . . 6 |
32 | 25, 31 | mpbid 146 | . . . . 5 |
33 | 3 | recnd 7948 | . . . . . 6 |
34 | 8 | recnd 7948 | . . . . . 6 |
35 | 18, 17 | mulcld 7940 | . . . . . 6 |
36 | 33, 34, 35 | subdird 8334 | . . . . 5 |
37 | 32, 36 | breqtrd 4015 | . . . 4 |
38 | qbtwnrelemcalc.lt | . . . . 5 | |
39 | 12, 9, 7, 38 | ltsub2dd 8477 | . . . 4 |
40 | 2, 10, 13, 37, 39 | lttrd 8045 | . . 3 |
41 | 12, 2, 7 | ltaddsub2d 8465 | . . 3 |
42 | 40, 41 | mpbird 166 | . 2 |
43 | 12, 2 | readdcld 7949 | . . 3 |
44 | 43, 3, 30 | ltdivmul2d 9706 | . 2 |
45 | 42, 44 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 class class class wbr 3989 (class class class)co 5853 cr 7773 cc0 7774 c1 7775 caddc 7777 cmul 7779 clt 7954 cmin 8090 # cap 8500 cdiv 8589 cn 8878 c2 8929 cz 9212 crp 9610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-z 9213 df-rp 9611 |
This theorem is referenced by: qbtwnre 10213 |
Copyright terms: Public domain | W3C validator |