ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qbtwnrelemcalc Unicode version

Theorem qbtwnrelemcalc 10347
Description: Lemma for qbtwnre 10348. Calculations involved in showing the constructed rational number is less than 
B. (Contributed by Jim Kingdon, 14-Oct-2021.)
Hypotheses
Ref Expression
qbtwnrelemcalc.m  |-  ( ph  ->  M  e.  ZZ )
qbtwnrelemcalc.n  |-  ( ph  ->  N  e.  NN )
qbtwnrelemcalc.a  |-  ( ph  ->  A  e.  RR )
qbtwnrelemcalc.b  |-  ( ph  ->  B  e.  RR )
qbtwnrelemcalc.lt  |-  ( ph  ->  M  <  ( A  x.  ( 2  x.  N ) ) )
qbtwnrelemcalc.1n  |-  ( ph  ->  ( 1  /  N
)  <  ( B  -  A ) )
Assertion
Ref Expression
qbtwnrelemcalc  |-  ( ph  ->  ( ( M  + 
2 )  /  (
2  x.  N ) )  <  B )

Proof of Theorem qbtwnrelemcalc
StepHypRef Expression
1 2re 9062 . . . . 5  |-  2  e.  RR
21a1i 9 . . . 4  |-  ( ph  ->  2  e.  RR )
3 qbtwnrelemcalc.b . . . . . 6  |-  ( ph  ->  B  e.  RR )
4 qbtwnrelemcalc.n . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
54nnred 9005 . . . . . . 7  |-  ( ph  ->  N  e.  RR )
62, 5remulcld 8059 . . . . . 6  |-  ( ph  ->  ( 2  x.  N
)  e.  RR )
73, 6remulcld 8059 . . . . 5  |-  ( ph  ->  ( B  x.  (
2  x.  N ) )  e.  RR )
8 qbtwnrelemcalc.a . . . . . 6  |-  ( ph  ->  A  e.  RR )
98, 6remulcld 8059 . . . . 5  |-  ( ph  ->  ( A  x.  (
2  x.  N ) )  e.  RR )
107, 9resubcld 8409 . . . 4  |-  ( ph  ->  ( ( B  x.  ( 2  x.  N
) )  -  ( A  x.  ( 2  x.  N ) ) )  e.  RR )
11 qbtwnrelemcalc.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
1211zred 9450 . . . . 5  |-  ( ph  ->  M  e.  RR )
137, 12resubcld 8409 . . . 4  |-  ( ph  ->  ( ( B  x.  ( 2  x.  N
) )  -  M
)  e.  RR )
14 2t1e2 9146 . . . . . . . . 9  |-  ( 2  x.  1 )  =  2
1514oveq1i 5933 . . . . . . . 8  |-  ( ( 2  x.  1 )  /  ( 2  x.  N ) )  =  ( 2  /  (
2  x.  N ) )
16 1cnd 8044 . . . . . . . . 9  |-  ( ph  ->  1  e.  CC )
175recnd 8057 . . . . . . . . 9  |-  ( ph  ->  N  e.  CC )
182recnd 8057 . . . . . . . . 9  |-  ( ph  ->  2  e.  CC )
194nnap0d 9038 . . . . . . . . 9  |-  ( ph  ->  N #  0 )
20 2ap0 9085 . . . . . . . . . 10  |-  2 #  0
2120a1i 9 . . . . . . . . 9  |-  ( ph  ->  2 #  0 )
2216, 17, 18, 19, 21divcanap5d 8846 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  1 )  /  (
2  x.  N ) )  =  ( 1  /  N ) )
2315, 22eqtr3id 2243 . . . . . . 7  |-  ( ph  ->  ( 2  /  (
2  x.  N ) )  =  ( 1  /  N ) )
24 qbtwnrelemcalc.1n . . . . . . 7  |-  ( ph  ->  ( 1  /  N
)  <  ( B  -  A ) )
2523, 24eqbrtrd 4056 . . . . . 6  |-  ( ph  ->  ( 2  /  (
2  x.  N ) )  <  ( B  -  A ) )
263, 8resubcld 8409 . . . . . . 7  |-  ( ph  ->  ( B  -  A
)  e.  RR )
27 2rp 9735 . . . . . . . . 9  |-  2  e.  RR+
2827a1i 9 . . . . . . . 8  |-  ( ph  ->  2  e.  RR+ )
294nnrpd 9771 . . . . . . . 8  |-  ( ph  ->  N  e.  RR+ )
3028, 29rpmulcld 9790 . . . . . . 7  |-  ( ph  ->  ( 2  x.  N
)  e.  RR+ )
312, 26, 30ltdivmul2d 9826 . . . . . 6  |-  ( ph  ->  ( ( 2  / 
( 2  x.  N
) )  <  ( B  -  A )  <->  2  <  ( ( B  -  A )  x.  ( 2  x.  N
) ) ) )
3225, 31mpbid 147 . . . . 5  |-  ( ph  ->  2  <  ( ( B  -  A )  x.  ( 2  x.  N ) ) )
333recnd 8057 . . . . . 6  |-  ( ph  ->  B  e.  CC )
348recnd 8057 . . . . . 6  |-  ( ph  ->  A  e.  CC )
3518, 17mulcld 8049 . . . . . 6  |-  ( ph  ->  ( 2  x.  N
)  e.  CC )
3633, 34, 35subdird 8443 . . . . 5  |-  ( ph  ->  ( ( B  -  A )  x.  (
2  x.  N ) )  =  ( ( B  x.  ( 2  x.  N ) )  -  ( A  x.  ( 2  x.  N
) ) ) )
3732, 36breqtrd 4060 . . . 4  |-  ( ph  ->  2  <  ( ( B  x.  ( 2  x.  N ) )  -  ( A  x.  ( 2  x.  N
) ) ) )
38 qbtwnrelemcalc.lt . . . . 5  |-  ( ph  ->  M  <  ( A  x.  ( 2  x.  N ) ) )
3912, 9, 7, 38ltsub2dd 8587 . . . 4  |-  ( ph  ->  ( ( B  x.  ( 2  x.  N
) )  -  ( A  x.  ( 2  x.  N ) ) )  <  ( ( B  x.  ( 2  x.  N ) )  -  M ) )
402, 10, 13, 37, 39lttrd 8154 . . 3  |-  ( ph  ->  2  <  ( ( B  x.  ( 2  x.  N ) )  -  M ) )
4112, 2, 7ltaddsub2d 8575 . . 3  |-  ( ph  ->  ( ( M  + 
2 )  <  ( B  x.  ( 2  x.  N ) )  <->  2  <  ( ( B  x.  ( 2  x.  N ) )  -  M ) ) )
4240, 41mpbird 167 . 2  |-  ( ph  ->  ( M  +  2 )  <  ( B  x.  ( 2  x.  N ) ) )
4312, 2readdcld 8058 . . 3  |-  ( ph  ->  ( M  +  2 )  e.  RR )
4443, 3, 30ltdivmul2d 9826 . 2  |-  ( ph  ->  ( ( ( M  +  2 )  / 
( 2  x.  N
) )  <  B  <->  ( M  +  2 )  <  ( B  x.  ( 2  x.  N
) ) ) )
4542, 44mpbird 167 1  |-  ( ph  ->  ( ( M  + 
2 )  /  (
2  x.  N ) )  <  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   class class class wbr 4034  (class class class)co 5923   RRcr 7880   0cc0 7881   1c1 7882    + caddc 7884    x. cmul 7886    < clt 8063    - cmin 8199   # cap 8610    / cdiv 8701   NNcn 8992   2c2 9043   ZZcz 9328   RR+crp 9730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-2 9051  df-z 9329  df-rp 9731
This theorem is referenced by:  qbtwnre  10348
  Copyright terms: Public domain W3C validator