| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qbtwnrelemcalc | Unicode version | ||
| Description: Lemma for qbtwnre 10436. Calculations involved in showing the
constructed
rational number is less than |
| Ref | Expression |
|---|---|
| qbtwnrelemcalc.m |
|
| qbtwnrelemcalc.n |
|
| qbtwnrelemcalc.a |
|
| qbtwnrelemcalc.b |
|
| qbtwnrelemcalc.lt |
|
| qbtwnrelemcalc.1n |
|
| Ref | Expression |
|---|---|
| qbtwnrelemcalc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9141 |
. . . . 5
| |
| 2 | 1 | a1i 9 |
. . . 4
|
| 3 | qbtwnrelemcalc.b |
. . . . . 6
| |
| 4 | qbtwnrelemcalc.n |
. . . . . . . 8
| |
| 5 | 4 | nnred 9084 |
. . . . . . 7
|
| 6 | 2, 5 | remulcld 8138 |
. . . . . 6
|
| 7 | 3, 6 | remulcld 8138 |
. . . . 5
|
| 8 | qbtwnrelemcalc.a |
. . . . . 6
| |
| 9 | 8, 6 | remulcld 8138 |
. . . . 5
|
| 10 | 7, 9 | resubcld 8488 |
. . . 4
|
| 11 | qbtwnrelemcalc.m |
. . . . . 6
| |
| 12 | 11 | zred 9530 |
. . . . 5
|
| 13 | 7, 12 | resubcld 8488 |
. . . 4
|
| 14 | 2t1e2 9225 |
. . . . . . . . 9
| |
| 15 | 14 | oveq1i 5977 |
. . . . . . . 8
|
| 16 | 1cnd 8123 |
. . . . . . . . 9
| |
| 17 | 5 | recnd 8136 |
. . . . . . . . 9
|
| 18 | 2 | recnd 8136 |
. . . . . . . . 9
|
| 19 | 4 | nnap0d 9117 |
. . . . . . . . 9
|
| 20 | 2ap0 9164 |
. . . . . . . . . 10
| |
| 21 | 20 | a1i 9 |
. . . . . . . . 9
|
| 22 | 16, 17, 18, 19, 21 | divcanap5d 8925 |
. . . . . . . 8
|
| 23 | 15, 22 | eqtr3id 2254 |
. . . . . . 7
|
| 24 | qbtwnrelemcalc.1n |
. . . . . . 7
| |
| 25 | 23, 24 | eqbrtrd 4081 |
. . . . . 6
|
| 26 | 3, 8 | resubcld 8488 |
. . . . . . 7
|
| 27 | 2rp 9815 |
. . . . . . . . 9
| |
| 28 | 27 | a1i 9 |
. . . . . . . 8
|
| 29 | 4 | nnrpd 9851 |
. . . . . . . 8
|
| 30 | 28, 29 | rpmulcld 9870 |
. . . . . . 7
|
| 31 | 2, 26, 30 | ltdivmul2d 9906 |
. . . . . 6
|
| 32 | 25, 31 | mpbid 147 |
. . . . 5
|
| 33 | 3 | recnd 8136 |
. . . . . 6
|
| 34 | 8 | recnd 8136 |
. . . . . 6
|
| 35 | 18, 17 | mulcld 8128 |
. . . . . 6
|
| 36 | 33, 34, 35 | subdird 8522 |
. . . . 5
|
| 37 | 32, 36 | breqtrd 4085 |
. . . 4
|
| 38 | qbtwnrelemcalc.lt |
. . . . 5
| |
| 39 | 12, 9, 7, 38 | ltsub2dd 8666 |
. . . 4
|
| 40 | 2, 10, 13, 37, 39 | lttrd 8233 |
. . 3
|
| 41 | 12, 2, 7 | ltaddsub2d 8654 |
. . 3
|
| 42 | 40, 41 | mpbird 167 |
. 2
|
| 43 | 12, 2 | readdcld 8137 |
. . 3
|
| 44 | 43, 3, 30 | ltdivmul2d 9906 |
. 2
|
| 45 | 42, 44 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-z 9408 df-rp 9811 |
| This theorem is referenced by: qbtwnre 10436 |
| Copyright terms: Public domain | W3C validator |