Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qbtwnrelemcalc | Unicode version |
Description: Lemma for qbtwnre 10138. Calculations involved in showing the constructed rational number is less than . (Contributed by Jim Kingdon, 14-Oct-2021.) |
Ref | Expression |
---|---|
qbtwnrelemcalc.m | |
qbtwnrelemcalc.n | |
qbtwnrelemcalc.a | |
qbtwnrelemcalc.b | |
qbtwnrelemcalc.lt | |
qbtwnrelemcalc.1n |
Ref | Expression |
---|---|
qbtwnrelemcalc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 8886 | . . . . 5 | |
2 | 1 | a1i 9 | . . . 4 |
3 | qbtwnrelemcalc.b | . . . . . 6 | |
4 | qbtwnrelemcalc.n | . . . . . . . 8 | |
5 | 4 | nnred 8829 | . . . . . . 7 |
6 | 2, 5 | remulcld 7891 | . . . . . 6 |
7 | 3, 6 | remulcld 7891 | . . . . 5 |
8 | qbtwnrelemcalc.a | . . . . . 6 | |
9 | 8, 6 | remulcld 7891 | . . . . 5 |
10 | 7, 9 | resubcld 8239 | . . . 4 |
11 | qbtwnrelemcalc.m | . . . . . 6 | |
12 | 11 | zred 9269 | . . . . 5 |
13 | 7, 12 | resubcld 8239 | . . . 4 |
14 | 2t1e2 8969 | . . . . . . . . 9 | |
15 | 14 | oveq1i 5828 | . . . . . . . 8 |
16 | 1cnd 7877 | . . . . . . . . 9 | |
17 | 5 | recnd 7889 | . . . . . . . . 9 |
18 | 2 | recnd 7889 | . . . . . . . . 9 |
19 | 4 | nnap0d 8862 | . . . . . . . . 9 # |
20 | 2ap0 8909 | . . . . . . . . . 10 # | |
21 | 20 | a1i 9 | . . . . . . . . 9 # |
22 | 16, 17, 18, 19, 21 | divcanap5d 8673 | . . . . . . . 8 |
23 | 15, 22 | syl5eqr 2204 | . . . . . . 7 |
24 | qbtwnrelemcalc.1n | . . . . . . 7 | |
25 | 23, 24 | eqbrtrd 3986 | . . . . . 6 |
26 | 3, 8 | resubcld 8239 | . . . . . . 7 |
27 | 2rp 9547 | . . . . . . . . 9 | |
28 | 27 | a1i 9 | . . . . . . . 8 |
29 | 4 | nnrpd 9583 | . . . . . . . 8 |
30 | 28, 29 | rpmulcld 9602 | . . . . . . 7 |
31 | 2, 26, 30 | ltdivmul2d 9638 | . . . . . 6 |
32 | 25, 31 | mpbid 146 | . . . . 5 |
33 | 3 | recnd 7889 | . . . . . 6 |
34 | 8 | recnd 7889 | . . . . . 6 |
35 | 18, 17 | mulcld 7881 | . . . . . 6 |
36 | 33, 34, 35 | subdird 8273 | . . . . 5 |
37 | 32, 36 | breqtrd 3990 | . . . 4 |
38 | qbtwnrelemcalc.lt | . . . . 5 | |
39 | 12, 9, 7, 38 | ltsub2dd 8416 | . . . 4 |
40 | 2, 10, 13, 37, 39 | lttrd 7984 | . . 3 |
41 | 12, 2, 7 | ltaddsub2d 8404 | . . 3 |
42 | 40, 41 | mpbird 166 | . 2 |
43 | 12, 2 | readdcld 7890 | . . 3 |
44 | 43, 3, 30 | ltdivmul2d 9638 | . 2 |
45 | 42, 44 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2128 class class class wbr 3965 (class class class)co 5818 cr 7714 cc0 7715 c1 7716 caddc 7718 cmul 7720 clt 7895 cmin 8029 # cap 8439 cdiv 8528 cn 8816 c2 8867 cz 9150 crp 9542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-mulrcl 7814 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-precex 7825 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-apti 7830 ax-pre-ltadd 7831 ax-pre-mulgt0 7832 ax-pre-mulext 7833 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-id 4252 df-po 4255 df-iso 4256 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-reap 8433 df-ap 8440 df-div 8529 df-inn 8817 df-2 8875 df-z 9151 df-rp 9543 |
This theorem is referenced by: qbtwnre 10138 |
Copyright terms: Public domain | W3C validator |