| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qbtwnrelemcalc | Unicode version | ||
| Description: Lemma for qbtwnre 10476. Calculations involved in showing the
constructed
rational number is less than |
| Ref | Expression |
|---|---|
| qbtwnrelemcalc.m |
|
| qbtwnrelemcalc.n |
|
| qbtwnrelemcalc.a |
|
| qbtwnrelemcalc.b |
|
| qbtwnrelemcalc.lt |
|
| qbtwnrelemcalc.1n |
|
| Ref | Expression |
|---|---|
| qbtwnrelemcalc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9180 |
. . . . 5
| |
| 2 | 1 | a1i 9 |
. . . 4
|
| 3 | qbtwnrelemcalc.b |
. . . . . 6
| |
| 4 | qbtwnrelemcalc.n |
. . . . . . . 8
| |
| 5 | 4 | nnred 9123 |
. . . . . . 7
|
| 6 | 2, 5 | remulcld 8177 |
. . . . . 6
|
| 7 | 3, 6 | remulcld 8177 |
. . . . 5
|
| 8 | qbtwnrelemcalc.a |
. . . . . 6
| |
| 9 | 8, 6 | remulcld 8177 |
. . . . 5
|
| 10 | 7, 9 | resubcld 8527 |
. . . 4
|
| 11 | qbtwnrelemcalc.m |
. . . . . 6
| |
| 12 | 11 | zred 9569 |
. . . . 5
|
| 13 | 7, 12 | resubcld 8527 |
. . . 4
|
| 14 | 2t1e2 9264 |
. . . . . . . . 9
| |
| 15 | 14 | oveq1i 6011 |
. . . . . . . 8
|
| 16 | 1cnd 8162 |
. . . . . . . . 9
| |
| 17 | 5 | recnd 8175 |
. . . . . . . . 9
|
| 18 | 2 | recnd 8175 |
. . . . . . . . 9
|
| 19 | 4 | nnap0d 9156 |
. . . . . . . . 9
|
| 20 | 2ap0 9203 |
. . . . . . . . . 10
| |
| 21 | 20 | a1i 9 |
. . . . . . . . 9
|
| 22 | 16, 17, 18, 19, 21 | divcanap5d 8964 |
. . . . . . . 8
|
| 23 | 15, 22 | eqtr3id 2276 |
. . . . . . 7
|
| 24 | qbtwnrelemcalc.1n |
. . . . . . 7
| |
| 25 | 23, 24 | eqbrtrd 4105 |
. . . . . 6
|
| 26 | 3, 8 | resubcld 8527 |
. . . . . . 7
|
| 27 | 2rp 9854 |
. . . . . . . . 9
| |
| 28 | 27 | a1i 9 |
. . . . . . . 8
|
| 29 | 4 | nnrpd 9890 |
. . . . . . . 8
|
| 30 | 28, 29 | rpmulcld 9909 |
. . . . . . 7
|
| 31 | 2, 26, 30 | ltdivmul2d 9945 |
. . . . . 6
|
| 32 | 25, 31 | mpbid 147 |
. . . . 5
|
| 33 | 3 | recnd 8175 |
. . . . . 6
|
| 34 | 8 | recnd 8175 |
. . . . . 6
|
| 35 | 18, 17 | mulcld 8167 |
. . . . . 6
|
| 36 | 33, 34, 35 | subdird 8561 |
. . . . 5
|
| 37 | 32, 36 | breqtrd 4109 |
. . . 4
|
| 38 | qbtwnrelemcalc.lt |
. . . . 5
| |
| 39 | 12, 9, 7, 38 | ltsub2dd 8705 |
. . . 4
|
| 40 | 2, 10, 13, 37, 39 | lttrd 8272 |
. . 3
|
| 41 | 12, 2, 7 | ltaddsub2d 8693 |
. . 3
|
| 42 | 40, 41 | mpbird 167 |
. 2
|
| 43 | 12, 2 | readdcld 8176 |
. . 3
|
| 44 | 43, 3, 30 | ltdivmul2d 9945 |
. 2
|
| 45 | 42, 44 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-z 9447 df-rp 9850 |
| This theorem is referenced by: qbtwnre 10476 |
| Copyright terms: Public domain | W3C validator |