Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qbtwnrelemcalc | Unicode version |
Description: Lemma for qbtwnre 10192. Calculations involved in showing the constructed rational number is less than . (Contributed by Jim Kingdon, 14-Oct-2021.) |
Ref | Expression |
---|---|
qbtwnrelemcalc.m | |
qbtwnrelemcalc.n | |
qbtwnrelemcalc.a | |
qbtwnrelemcalc.b | |
qbtwnrelemcalc.lt | |
qbtwnrelemcalc.1n |
Ref | Expression |
---|---|
qbtwnrelemcalc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 8927 | . . . . 5 | |
2 | 1 | a1i 9 | . . . 4 |
3 | qbtwnrelemcalc.b | . . . . . 6 | |
4 | qbtwnrelemcalc.n | . . . . . . . 8 | |
5 | 4 | nnred 8870 | . . . . . . 7 |
6 | 2, 5 | remulcld 7929 | . . . . . 6 |
7 | 3, 6 | remulcld 7929 | . . . . 5 |
8 | qbtwnrelemcalc.a | . . . . . 6 | |
9 | 8, 6 | remulcld 7929 | . . . . 5 |
10 | 7, 9 | resubcld 8279 | . . . 4 |
11 | qbtwnrelemcalc.m | . . . . . 6 | |
12 | 11 | zred 9313 | . . . . 5 |
13 | 7, 12 | resubcld 8279 | . . . 4 |
14 | 2t1e2 9010 | . . . . . . . . 9 | |
15 | 14 | oveq1i 5852 | . . . . . . . 8 |
16 | 1cnd 7915 | . . . . . . . . 9 | |
17 | 5 | recnd 7927 | . . . . . . . . 9 |
18 | 2 | recnd 7927 | . . . . . . . . 9 |
19 | 4 | nnap0d 8903 | . . . . . . . . 9 # |
20 | 2ap0 8950 | . . . . . . . . . 10 # | |
21 | 20 | a1i 9 | . . . . . . . . 9 # |
22 | 16, 17, 18, 19, 21 | divcanap5d 8713 | . . . . . . . 8 |
23 | 15, 22 | eqtr3id 2213 | . . . . . . 7 |
24 | qbtwnrelemcalc.1n | . . . . . . 7 | |
25 | 23, 24 | eqbrtrd 4004 | . . . . . 6 |
26 | 3, 8 | resubcld 8279 | . . . . . . 7 |
27 | 2rp 9594 | . . . . . . . . 9 | |
28 | 27 | a1i 9 | . . . . . . . 8 |
29 | 4 | nnrpd 9630 | . . . . . . . 8 |
30 | 28, 29 | rpmulcld 9649 | . . . . . . 7 |
31 | 2, 26, 30 | ltdivmul2d 9685 | . . . . . 6 |
32 | 25, 31 | mpbid 146 | . . . . 5 |
33 | 3 | recnd 7927 | . . . . . 6 |
34 | 8 | recnd 7927 | . . . . . 6 |
35 | 18, 17 | mulcld 7919 | . . . . . 6 |
36 | 33, 34, 35 | subdird 8313 | . . . . 5 |
37 | 32, 36 | breqtrd 4008 | . . . 4 |
38 | qbtwnrelemcalc.lt | . . . . 5 | |
39 | 12, 9, 7, 38 | ltsub2dd 8456 | . . . 4 |
40 | 2, 10, 13, 37, 39 | lttrd 8024 | . . 3 |
41 | 12, 2, 7 | ltaddsub2d 8444 | . . 3 |
42 | 40, 41 | mpbird 166 | . 2 |
43 | 12, 2 | readdcld 7928 | . . 3 |
44 | 43, 3, 30 | ltdivmul2d 9685 | . 2 |
45 | 42, 44 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 class class class wbr 3982 (class class class)co 5842 cr 7752 cc0 7753 c1 7754 caddc 7756 cmul 7758 clt 7933 cmin 8069 # cap 8479 cdiv 8568 cn 8857 c2 8908 cz 9191 crp 9589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-z 9192 df-rp 9590 |
This theorem is referenced by: qbtwnre 10192 |
Copyright terms: Public domain | W3C validator |