ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlembern Unicode version

Theorem cvgratnnlembern 11705
Description: Lemma for cvgratnn 11713. Upper bound for a geometric progression of positive ratio less than one. (Contributed by Jim Kingdon, 24-Nov-2022.)
Hypotheses
Ref Expression
cvgratnnlembern.3  |-  ( ph  ->  A  e.  RR )
cvgratnnlembern.4  |-  ( ph  ->  A  <  1 )
cvgratnnlembern.gt0  |-  ( ph  ->  0  <  A )
cvgratnnlembern.m  |-  ( ph  ->  M  e.  NN )
Assertion
Ref Expression
cvgratnnlembern  |-  ( ph  ->  ( A ^ M
)  <  ( (
1  /  ( ( 1  /  A )  -  1 ) )  /  M ) )

Proof of Theorem cvgratnnlembern
StepHypRef Expression
1 cvgratnnlembern.3 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
2 cvgratnnlembern.gt0 . . . . . . . . . 10  |-  ( ph  ->  0  <  A )
31, 2gt0ap0d 8673 . . . . . . . . 9  |-  ( ph  ->  A #  0 )
41, 3rerecclapd 8878 . . . . . . . 8  |-  ( ph  ->  ( 1  /  A
)  e.  RR )
5 1red 8058 . . . . . . . 8  |-  ( ph  ->  1  e.  RR )
64, 5resubcld 8424 . . . . . . 7  |-  ( ph  ->  ( ( 1  /  A )  -  1 )  e.  RR )
7 cvgratnnlembern.m . . . . . . . 8  |-  ( ph  ->  M  e.  NN )
87nnred 9020 . . . . . . 7  |-  ( ph  ->  M  e.  RR )
96, 8remulcld 8074 . . . . . 6  |-  ( ph  ->  ( ( ( 1  /  A )  - 
1 )  x.  M
)  e.  RR )
109recnd 8072 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  A )  - 
1 )  x.  M
)  e.  CC )
11 cvgratnnlembern.4 . . . . . . . . . 10  |-  ( ph  ->  A  <  1 )
121, 2elrpd 9785 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR+ )
1312reclt1d 9802 . . . . . . . . . 10  |-  ( ph  ->  ( A  <  1  <->  1  <  ( 1  /  A ) ) )
1411, 13mpbid 147 . . . . . . . . 9  |-  ( ph  ->  1  <  ( 1  /  A ) )
155, 4posdifd 8576 . . . . . . . . 9  |-  ( ph  ->  ( 1  <  (
1  /  A )  <->  0  <  ( ( 1  /  A )  -  1 ) ) )
1614, 15mpbid 147 . . . . . . . 8  |-  ( ph  ->  0  <  ( ( 1  /  A )  -  1 ) )
176, 16elrpd 9785 . . . . . . 7  |-  ( ph  ->  ( ( 1  /  A )  -  1 )  e.  RR+ )
187nnrpd 9786 . . . . . . 7  |-  ( ph  ->  M  e.  RR+ )
1917, 18rpmulcld 9805 . . . . . 6  |-  ( ph  ->  ( ( ( 1  /  A )  - 
1 )  x.  M
)  e.  RR+ )
2019rpap0d 9794 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  A )  - 
1 )  x.  M
) #  0 )
2110, 20recrecapd 8829 . . . 4  |-  ( ph  ->  ( 1  /  (
1  /  ( ( ( 1  /  A
)  -  1 )  x.  M ) ) )  =  ( ( ( 1  /  A
)  -  1 )  x.  M ) )
229, 5readdcld 8073 . . . . 5  |-  ( ph  ->  ( ( ( ( 1  /  A )  -  1 )  x.  M )  +  1 )  e.  RR )
237nnnn0d 9319 . . . . . . 7  |-  ( ph  ->  M  e.  NN0 )
241, 23reexpcld 10799 . . . . . 6  |-  ( ph  ->  ( A ^ M
)  e.  RR )
251recnd 8072 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
267nnzd 9464 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
2725, 3, 26expap0d 10788 . . . . . 6  |-  ( ph  ->  ( A ^ M
) #  0 )
2824, 27rerecclapd 8878 . . . . 5  |-  ( ph  ->  ( 1  /  ( A ^ M ) )  e.  RR )
299ltp1d 8974 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  A )  - 
1 )  x.  M
)  <  ( (
( ( 1  /  A )  -  1 )  x.  M )  +  1 ) )
30 0le1 8525 . . . . . . . . 9  |-  0  <_  1
3130a1i 9 . . . . . . . 8  |-  ( ph  ->  0  <_  1 )
325, 12, 31divge0d 9829 . . . . . . 7  |-  ( ph  ->  0  <_  ( 1  /  A ) )
33 bernneq2 10770 . . . . . . 7  |-  ( ( ( 1  /  A
)  e.  RR  /\  M  e.  NN0  /\  0  <_  ( 1  /  A
) )  ->  (
( ( ( 1  /  A )  - 
1 )  x.  M
)  +  1 )  <_  ( ( 1  /  A ) ^ M ) )
344, 23, 32, 33syl3anc 1249 . . . . . 6  |-  ( ph  ->  ( ( ( ( 1  /  A )  -  1 )  x.  M )  +  1 )  <_  ( (
1  /  A ) ^ M ) )
3525, 3, 26exprecapd 10790 . . . . . 6  |-  ( ph  ->  ( ( 1  /  A ) ^ M
)  =  ( 1  /  ( A ^ M ) ) )
3634, 35breqtrd 4060 . . . . 5  |-  ( ph  ->  ( ( ( ( 1  /  A )  -  1 )  x.  M )  +  1 )  <_  ( 1  /  ( A ^ M ) ) )
379, 22, 28, 29, 36ltletrd 8467 . . . 4  |-  ( ph  ->  ( ( ( 1  /  A )  - 
1 )  x.  M
)  <  ( 1  /  ( A ^ M ) ) )
3821, 37eqbrtrd 4056 . . 3  |-  ( ph  ->  ( 1  /  (
1  /  ( ( ( 1  /  A
)  -  1 )  x.  M ) ) )  <  ( 1  /  ( A ^ M ) ) )
3912, 26rpexpcld 10806 . . . 4  |-  ( ph  ->  ( A ^ M
)  e.  RR+ )
4019rpreccld 9799 . . . 4  |-  ( ph  ->  ( 1  /  (
( ( 1  /  A )  -  1 )  x.  M ) )  e.  RR+ )
4139, 40ltrecd 9807 . . 3  |-  ( ph  ->  ( ( A ^ M )  <  (
1  /  ( ( ( 1  /  A
)  -  1 )  x.  M ) )  <-> 
( 1  /  (
1  /  ( ( ( 1  /  A
)  -  1 )  x.  M ) ) )  <  ( 1  /  ( A ^ M ) ) ) )
4238, 41mpbird 167 . 2  |-  ( ph  ->  ( A ^ M
)  <  ( 1  /  ( ( ( 1  /  A )  -  1 )  x.  M ) ) )
436recnd 8072 . . 3  |-  ( ph  ->  ( ( 1  /  A )  -  1 )  e.  CC )
447nncnd 9021 . . 3  |-  ( ph  ->  M  e.  CC )
4517rpap0d 9794 . . 3  |-  ( ph  ->  ( ( 1  /  A )  -  1 ) #  0 )
4618rpap0d 9794 . . 3  |-  ( ph  ->  M #  0 )
4743, 44, 45, 46recdivap2d 8852 . 2  |-  ( ph  ->  ( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  M
)  =  ( 1  /  ( ( ( 1  /  A )  -  1 )  x.  M ) ) )
4842, 47breqtrrd 4062 1  |-  ( ph  ->  ( A ^ M
)  <  ( (
1  /  ( ( 1  /  A )  -  1 ) )  /  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   RRcr 7895   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901    < clt 8078    <_ cle 8079    - cmin 8214    / cdiv 8716   NNcn 9007   NN0cn0 9266   ^cexp 10647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-rp 9746  df-seqfrec 10557  df-exp 10648
This theorem is referenced by:  cvgratnnlemfm  11711
  Copyright terms: Public domain W3C validator