ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlembern Unicode version

Theorem cvgratnnlembern 11949
Description: Lemma for cvgratnn 11957. Upper bound for a geometric progression of positive ratio less than one. (Contributed by Jim Kingdon, 24-Nov-2022.)
Hypotheses
Ref Expression
cvgratnnlembern.3  |-  ( ph  ->  A  e.  RR )
cvgratnnlembern.4  |-  ( ph  ->  A  <  1 )
cvgratnnlembern.gt0  |-  ( ph  ->  0  <  A )
cvgratnnlembern.m  |-  ( ph  ->  M  e.  NN )
Assertion
Ref Expression
cvgratnnlembern  |-  ( ph  ->  ( A ^ M
)  <  ( (
1  /  ( ( 1  /  A )  -  1 ) )  /  M ) )

Proof of Theorem cvgratnnlembern
StepHypRef Expression
1 cvgratnnlembern.3 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
2 cvgratnnlembern.gt0 . . . . . . . . . 10  |-  ( ph  ->  0  <  A )
31, 2gt0ap0d 8737 . . . . . . . . 9  |-  ( ph  ->  A #  0 )
41, 3rerecclapd 8942 . . . . . . . 8  |-  ( ph  ->  ( 1  /  A
)  e.  RR )
5 1red 8122 . . . . . . . 8  |-  ( ph  ->  1  e.  RR )
64, 5resubcld 8488 . . . . . . 7  |-  ( ph  ->  ( ( 1  /  A )  -  1 )  e.  RR )
7 cvgratnnlembern.m . . . . . . . 8  |-  ( ph  ->  M  e.  NN )
87nnred 9084 . . . . . . 7  |-  ( ph  ->  M  e.  RR )
96, 8remulcld 8138 . . . . . 6  |-  ( ph  ->  ( ( ( 1  /  A )  - 
1 )  x.  M
)  e.  RR )
109recnd 8136 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  A )  - 
1 )  x.  M
)  e.  CC )
11 cvgratnnlembern.4 . . . . . . . . . 10  |-  ( ph  ->  A  <  1 )
121, 2elrpd 9850 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR+ )
1312reclt1d 9867 . . . . . . . . . 10  |-  ( ph  ->  ( A  <  1  <->  1  <  ( 1  /  A ) ) )
1411, 13mpbid 147 . . . . . . . . 9  |-  ( ph  ->  1  <  ( 1  /  A ) )
155, 4posdifd 8640 . . . . . . . . 9  |-  ( ph  ->  ( 1  <  (
1  /  A )  <->  0  <  ( ( 1  /  A )  -  1 ) ) )
1614, 15mpbid 147 . . . . . . . 8  |-  ( ph  ->  0  <  ( ( 1  /  A )  -  1 ) )
176, 16elrpd 9850 . . . . . . 7  |-  ( ph  ->  ( ( 1  /  A )  -  1 )  e.  RR+ )
187nnrpd 9851 . . . . . . 7  |-  ( ph  ->  M  e.  RR+ )
1917, 18rpmulcld 9870 . . . . . 6  |-  ( ph  ->  ( ( ( 1  /  A )  - 
1 )  x.  M
)  e.  RR+ )
2019rpap0d 9859 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  A )  - 
1 )  x.  M
) #  0 )
2110, 20recrecapd 8893 . . . 4  |-  ( ph  ->  ( 1  /  (
1  /  ( ( ( 1  /  A
)  -  1 )  x.  M ) ) )  =  ( ( ( 1  /  A
)  -  1 )  x.  M ) )
229, 5readdcld 8137 . . . . 5  |-  ( ph  ->  ( ( ( ( 1  /  A )  -  1 )  x.  M )  +  1 )  e.  RR )
237nnnn0d 9383 . . . . . . 7  |-  ( ph  ->  M  e.  NN0 )
241, 23reexpcld 10872 . . . . . 6  |-  ( ph  ->  ( A ^ M
)  e.  RR )
251recnd 8136 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
267nnzd 9529 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
2725, 3, 26expap0d 10861 . . . . . 6  |-  ( ph  ->  ( A ^ M
) #  0 )
2824, 27rerecclapd 8942 . . . . 5  |-  ( ph  ->  ( 1  /  ( A ^ M ) )  e.  RR )
299ltp1d 9038 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  A )  - 
1 )  x.  M
)  <  ( (
( ( 1  /  A )  -  1 )  x.  M )  +  1 ) )
30 0le1 8589 . . . . . . . . 9  |-  0  <_  1
3130a1i 9 . . . . . . . 8  |-  ( ph  ->  0  <_  1 )
325, 12, 31divge0d 9894 . . . . . . 7  |-  ( ph  ->  0  <_  ( 1  /  A ) )
33 bernneq2 10843 . . . . . . 7  |-  ( ( ( 1  /  A
)  e.  RR  /\  M  e.  NN0  /\  0  <_  ( 1  /  A
) )  ->  (
( ( ( 1  /  A )  - 
1 )  x.  M
)  +  1 )  <_  ( ( 1  /  A ) ^ M ) )
344, 23, 32, 33syl3anc 1250 . . . . . 6  |-  ( ph  ->  ( ( ( ( 1  /  A )  -  1 )  x.  M )  +  1 )  <_  ( (
1  /  A ) ^ M ) )
3525, 3, 26exprecapd 10863 . . . . . 6  |-  ( ph  ->  ( ( 1  /  A ) ^ M
)  =  ( 1  /  ( A ^ M ) ) )
3634, 35breqtrd 4085 . . . . 5  |-  ( ph  ->  ( ( ( ( 1  /  A )  -  1 )  x.  M )  +  1 )  <_  ( 1  /  ( A ^ M ) ) )
379, 22, 28, 29, 36ltletrd 8531 . . . 4  |-  ( ph  ->  ( ( ( 1  /  A )  - 
1 )  x.  M
)  <  ( 1  /  ( A ^ M ) ) )
3821, 37eqbrtrd 4081 . . 3  |-  ( ph  ->  ( 1  /  (
1  /  ( ( ( 1  /  A
)  -  1 )  x.  M ) ) )  <  ( 1  /  ( A ^ M ) ) )
3912, 26rpexpcld 10879 . . . 4  |-  ( ph  ->  ( A ^ M
)  e.  RR+ )
4019rpreccld 9864 . . . 4  |-  ( ph  ->  ( 1  /  (
( ( 1  /  A )  -  1 )  x.  M ) )  e.  RR+ )
4139, 40ltrecd 9872 . . 3  |-  ( ph  ->  ( ( A ^ M )  <  (
1  /  ( ( ( 1  /  A
)  -  1 )  x.  M ) )  <-> 
( 1  /  (
1  /  ( ( ( 1  /  A
)  -  1 )  x.  M ) ) )  <  ( 1  /  ( A ^ M ) ) ) )
4238, 41mpbird 167 . 2  |-  ( ph  ->  ( A ^ M
)  <  ( 1  /  ( ( ( 1  /  A )  -  1 )  x.  M ) ) )
436recnd 8136 . . 3  |-  ( ph  ->  ( ( 1  /  A )  -  1 )  e.  CC )
447nncnd 9085 . . 3  |-  ( ph  ->  M  e.  CC )
4517rpap0d 9859 . . 3  |-  ( ph  ->  ( ( 1  /  A )  -  1 ) #  0 )
4618rpap0d 9859 . . 3  |-  ( ph  ->  M #  0 )
4743, 44, 45, 46recdivap2d 8916 . 2  |-  ( ph  ->  ( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  M
)  =  ( 1  /  ( ( ( 1  /  A )  -  1 )  x.  M ) ) )
4842, 47breqtrrd 4087 1  |-  ( ph  ->  ( A ^ M
)  <  ( (
1  /  ( ( 1  /  A )  -  1 ) )  /  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178   class class class wbr 4059  (class class class)co 5967   RRcr 7959   0cc0 7960   1c1 7961    + caddc 7963    x. cmul 7965    < clt 8142    <_ cle 8143    - cmin 8278    / cdiv 8780   NNcn 9071   NN0cn0 9330   ^cexp 10720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-rp 9811  df-seqfrec 10630  df-exp 10721
This theorem is referenced by:  cvgratnnlemfm  11955
  Copyright terms: Public domain W3C validator