ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpmulcxp Unicode version

Theorem rpmulcxp 14626
Description: Complex exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
rpmulcxp  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  (
( A  x.  B
)  ^c  C )  =  ( ( A  ^c  C )  x.  ( B  ^c  C ) ) )

Proof of Theorem rpmulcxp
StepHypRef Expression
1 simp1 998 . . . . . . 7  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  A  e.  RR+ )
2 simp2 999 . . . . . . 7  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  B  e.  RR+ )
31, 2relogmuld 14601 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( log `  ( A  x.  B ) )  =  ( ( log `  A
)  +  ( log `  B ) ) )
43oveq2d 5904 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( C  x.  ( log `  ( A  x.  B
) ) )  =  ( C  x.  (
( log `  A
)  +  ( log `  B ) ) ) )
5 simp3 1000 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  C  e.  CC )
61relogcld 14599 . . . . . . 7  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( log `  A )  e.  RR )
76recnd 8000 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( log `  A )  e.  CC )
82relogcld 14599 . . . . . . 7  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( log `  B )  e.  RR )
98recnd 8000 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( log `  B )  e.  CC )
105, 7, 9adddid 7996 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( C  x.  ( ( log `  A )  +  ( log `  B
) ) )  =  ( ( C  x.  ( log `  A ) )  +  ( C  x.  ( log `  B
) ) ) )
114, 10eqtrd 2220 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( C  x.  ( log `  ( A  x.  B
) ) )  =  ( ( C  x.  ( log `  A ) )  +  ( C  x.  ( log `  B
) ) ) )
1211fveq2d 5531 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( exp `  ( C  x.  ( log `  ( A  x.  B ) ) ) )  =  ( exp `  ( ( C  x.  ( log `  A ) )  +  ( C  x.  ( log `  B ) ) ) ) )
135, 7mulcld 7992 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( C  x.  ( log `  A ) )  e.  CC )
145, 9mulcld 7992 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( C  x.  ( log `  B ) )  e.  CC )
15 efadd 11697 . . . 4  |-  ( ( ( C  x.  ( log `  A ) )  e.  CC  /\  ( C  x.  ( log `  B ) )  e.  CC )  ->  ( exp `  ( ( C  x.  ( log `  A
) )  +  ( C  x.  ( log `  B ) ) ) )  =  ( ( exp `  ( C  x.  ( log `  A
) ) )  x.  ( exp `  ( C  x.  ( log `  B ) ) ) ) )
1613, 14, 15syl2anc 411 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( exp `  ( ( C  x.  ( log `  A
) )  +  ( C  x.  ( log `  B ) ) ) )  =  ( ( exp `  ( C  x.  ( log `  A
) ) )  x.  ( exp `  ( C  x.  ( log `  B ) ) ) ) )
1712, 16eqtrd 2220 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( exp `  ( C  x.  ( log `  ( A  x.  B ) ) ) )  =  ( ( exp `  ( C  x.  ( log `  A ) ) )  x.  ( exp `  ( C  x.  ( log `  B ) ) ) ) )
181, 2rpmulcld 9727 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( A  x.  B )  e.  RR+ )
19 rpcxpef 14611 . . 3  |-  ( ( ( A  x.  B
)  e.  RR+  /\  C  e.  CC )  ->  (
( A  x.  B
)  ^c  C )  =  ( exp `  ( C  x.  ( log `  ( A  x.  B ) ) ) ) )
2018, 5, 19syl2anc 411 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  (
( A  x.  B
)  ^c  C )  =  ( exp `  ( C  x.  ( log `  ( A  x.  B ) ) ) ) )
21 rpcxpef 14611 . . . 4  |-  ( ( A  e.  RR+  /\  C  e.  CC )  ->  ( A  ^c  C )  =  ( exp `  ( C  x.  ( log `  A ) ) ) )
221, 5, 21syl2anc 411 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( A  ^c  C )  =  ( exp `  ( C  x.  ( log `  A ) ) ) )
23 rpcxpef 14611 . . . 4  |-  ( ( B  e.  RR+  /\  C  e.  CC )  ->  ( B  ^c  C )  =  ( exp `  ( C  x.  ( log `  B ) ) ) )
242, 5, 23syl2anc 411 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( B  ^c  C )  =  ( exp `  ( C  x.  ( log `  B ) ) ) )
2522, 24oveq12d 5906 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  (
( A  ^c  C )  x.  ( B  ^c  C ) )  =  ( ( exp `  ( C  x.  ( log `  A
) ) )  x.  ( exp `  ( C  x.  ( log `  B ) ) ) ) )
2617, 20, 253eqtr4d 2230 1  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  (
( A  x.  B
)  ^c  C )  =  ( ( A  ^c  C )  x.  ( B  ^c  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 979    = wceq 1363    e. wcel 2158   ` cfv 5228  (class class class)co 5888   CCcc 7823    + caddc 7828    x. cmul 7830   RR+crp 9667   expce 11664   logclog 14573    ^c ccxp 14574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943  ax-arch 7944  ax-caucvg 7945  ax-pre-suploc 7946  ax-addf 7947  ax-mulf 7948
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-disj 3993  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-of 6097  df-1st 6155  df-2nd 6156  df-recs 6320  df-irdg 6385  df-frec 6406  df-1o 6431  df-oadd 6435  df-er 6549  df-map 6664  df-pm 6665  df-en 6755  df-dom 6756  df-fin 6757  df-sup 6997  df-inf 6998  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-n0 9191  df-z 9268  df-uz 9543  df-q 9634  df-rp 9668  df-xneg 9786  df-xadd 9787  df-ioo 9906  df-ico 9908  df-icc 9909  df-fz 10023  df-fzo 10157  df-seqfrec 10460  df-exp 10534  df-fac 10720  df-bc 10742  df-ihash 10770  df-shft 10838  df-cj 10865  df-re 10866  df-im 10867  df-rsqrt 11021  df-abs 11022  df-clim 11301  df-sumdc 11376  df-ef 11670  df-e 11671  df-rest 12708  df-topgen 12727  df-psmet 13729  df-xmet 13730  df-met 13731  df-bl 13732  df-mopn 13733  df-top 13794  df-topon 13807  df-bases 13839  df-ntr 13892  df-cn 13984  df-cnp 13985  df-tx 14049  df-cncf 14354  df-limced 14421  df-dvap 14422  df-relog 14575  df-rpcxp 14576
This theorem is referenced by:  cxprec  14627  rpdivcxp  14628
  Copyright terms: Public domain W3C validator