ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpmulcxp Unicode version

Theorem rpmulcxp 13169
Description: Complex exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
rpmulcxp  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  (
( A  x.  B
)  ^c  C )  =  ( ( A  ^c  C )  x.  ( B  ^c  C ) ) )

Proof of Theorem rpmulcxp
StepHypRef Expression
1 simp1 982 . . . . . . 7  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  A  e.  RR+ )
2 simp2 983 . . . . . . 7  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  B  e.  RR+ )
31, 2relogmuld 13144 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( log `  ( A  x.  B ) )  =  ( ( log `  A
)  +  ( log `  B ) ) )
43oveq2d 5830 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( C  x.  ( log `  ( A  x.  B
) ) )  =  ( C  x.  (
( log `  A
)  +  ( log `  B ) ) ) )
5 simp3 984 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  C  e.  CC )
61relogcld 13142 . . . . . . 7  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( log `  A )  e.  RR )
76recnd 7885 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( log `  A )  e.  CC )
82relogcld 13142 . . . . . . 7  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( log `  B )  e.  RR )
98recnd 7885 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( log `  B )  e.  CC )
105, 7, 9adddid 7881 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( C  x.  ( ( log `  A )  +  ( log `  B
) ) )  =  ( ( C  x.  ( log `  A ) )  +  ( C  x.  ( log `  B
) ) ) )
114, 10eqtrd 2187 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( C  x.  ( log `  ( A  x.  B
) ) )  =  ( ( C  x.  ( log `  A ) )  +  ( C  x.  ( log `  B
) ) ) )
1211fveq2d 5465 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( exp `  ( C  x.  ( log `  ( A  x.  B ) ) ) )  =  ( exp `  ( ( C  x.  ( log `  A ) )  +  ( C  x.  ( log `  B ) ) ) ) )
135, 7mulcld 7877 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( C  x.  ( log `  A ) )  e.  CC )
145, 9mulcld 7877 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( C  x.  ( log `  B ) )  e.  CC )
15 efadd 11549 . . . 4  |-  ( ( ( C  x.  ( log `  A ) )  e.  CC  /\  ( C  x.  ( log `  B ) )  e.  CC )  ->  ( exp `  ( ( C  x.  ( log `  A
) )  +  ( C  x.  ( log `  B ) ) ) )  =  ( ( exp `  ( C  x.  ( log `  A
) ) )  x.  ( exp `  ( C  x.  ( log `  B ) ) ) ) )
1613, 14, 15syl2anc 409 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( exp `  ( ( C  x.  ( log `  A
) )  +  ( C  x.  ( log `  B ) ) ) )  =  ( ( exp `  ( C  x.  ( log `  A
) ) )  x.  ( exp `  ( C  x.  ( log `  B ) ) ) ) )
1712, 16eqtrd 2187 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( exp `  ( C  x.  ( log `  ( A  x.  B ) ) ) )  =  ( ( exp `  ( C  x.  ( log `  A ) ) )  x.  ( exp `  ( C  x.  ( log `  B ) ) ) ) )
181, 2rpmulcld 9598 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( A  x.  B )  e.  RR+ )
19 rpcxpef 13154 . . 3  |-  ( ( ( A  x.  B
)  e.  RR+  /\  C  e.  CC )  ->  (
( A  x.  B
)  ^c  C )  =  ( exp `  ( C  x.  ( log `  ( A  x.  B ) ) ) ) )
2018, 5, 19syl2anc 409 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  (
( A  x.  B
)  ^c  C )  =  ( exp `  ( C  x.  ( log `  ( A  x.  B ) ) ) ) )
21 rpcxpef 13154 . . . 4  |-  ( ( A  e.  RR+  /\  C  e.  CC )  ->  ( A  ^c  C )  =  ( exp `  ( C  x.  ( log `  A ) ) ) )
221, 5, 21syl2anc 409 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( A  ^c  C )  =  ( exp `  ( C  x.  ( log `  A ) ) ) )
23 rpcxpef 13154 . . . 4  |-  ( ( B  e.  RR+  /\  C  e.  CC )  ->  ( B  ^c  C )  =  ( exp `  ( C  x.  ( log `  B ) ) ) )
242, 5, 23syl2anc 409 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  ( B  ^c  C )  =  ( exp `  ( C  x.  ( log `  B ) ) ) )
2522, 24oveq12d 5832 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  (
( A  ^c  C )  x.  ( B  ^c  C ) )  =  ( ( exp `  ( C  x.  ( log `  A
) ) )  x.  ( exp `  ( C  x.  ( log `  B ) ) ) ) )
2617, 20, 253eqtr4d 2197 1  |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  (
( A  x.  B
)  ^c  C )  =  ( ( A  ^c  C )  x.  ( B  ^c  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 963    = wceq 1332    e. wcel 2125   ` cfv 5163  (class class class)co 5814   CCcc 7709    + caddc 7714    x. cmul 7716   RR+crp 9538   expce 11516   logclog 13116    ^c ccxp 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831  ax-pre-suploc 7832  ax-addf 7833  ax-mulf 7834
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-disj 3939  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-isom 5172  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-of 6022  df-1st 6078  df-2nd 6079  df-recs 6242  df-irdg 6307  df-frec 6328  df-1o 6353  df-oadd 6357  df-er 6469  df-map 6584  df-pm 6585  df-en 6675  df-dom 6676  df-fin 6677  df-sup 6916  df-inf 6917  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-xneg 9657  df-xadd 9658  df-ioo 9774  df-ico 9776  df-icc 9777  df-fz 9891  df-fzo 10020  df-seqfrec 10323  df-exp 10397  df-fac 10577  df-bc 10599  df-ihash 10627  df-shft 10692  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876  df-clim 11153  df-sumdc 11228  df-ef 11522  df-e 11523  df-rest 12292  df-topgen 12311  df-psmet 12326  df-xmet 12327  df-met 12328  df-bl 12329  df-mopn 12330  df-top 12335  df-topon 12348  df-bases 12380  df-ntr 12435  df-cn 12527  df-cnp 12528  df-tx 12592  df-cncf 12897  df-limced 12964  df-dvap 12965  df-relog 13118  df-rpcxp 13119
This theorem is referenced by:  cxprec  13170  rpdivcxp  13171
  Copyright terms: Public domain W3C validator