ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnn Unicode version

Theorem cvgratnn 11462
Description: Ratio test for convergence of a complex infinite series. If the ratio  A of the absolute values of successive terms in an infinite sequence  F is less than 1 for all terms, then the infinite sum of the terms of  F converges to a complex number. Although this theorem is similar to cvgratz 11463 and cvgratgt0 11464, the decision to index starting at one is not merely cosmetic, as proving convergence using climcvg1n 11281 is sensitive to how a sequence is indexed. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 12-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
Assertion
Ref Expression
cvgratnn  |-  ( ph  ->  seq 1 (  +  ,  F )  e. 
dom 
~~>  )
Distinct variable groups:    A, k    k, F    ph, k

Proof of Theorem cvgratnn
Dummy variables  n  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9493 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9210 . . 3  |-  ( ph  ->  1  e.  ZZ )
3 cvgratnn.6 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
41, 2, 3serf 10400 . 2  |-  ( ph  ->  seq 1 (  +  ,  F ) : NN --> CC )
5 cvgratnn.3 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR )
6 cvgratnn.gt0 . . . . . . . . . 10  |-  ( ph  ->  0  <  A )
75, 6elrpd 9621 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR+ )
87rprecred 9636 . . . . . . . 8  |-  ( ph  ->  ( 1  /  A
)  e.  RR )
9 1red 7906 . . . . . . . 8  |-  ( ph  ->  1  e.  RR )
108, 9resubcld 8271 . . . . . . 7  |-  ( ph  ->  ( ( 1  /  A )  -  1 )  e.  RR )
11 cvgratnn.4 . . . . . . . . 9  |-  ( ph  ->  A  <  1 )
127reclt1d 9638 . . . . . . . . 9  |-  ( ph  ->  ( A  <  1  <->  1  <  ( 1  /  A ) ) )
1311, 12mpbid 146 . . . . . . . 8  |-  ( ph  ->  1  <  ( 1  /  A ) )
149, 8posdifd 8422 . . . . . . . 8  |-  ( ph  ->  ( 1  <  (
1  /  A )  <->  0  <  ( ( 1  /  A )  -  1 ) ) )
1513, 14mpbid 146 . . . . . . 7  |-  ( ph  ->  0  <  ( ( 1  /  A )  -  1 ) )
1610, 15elrpd 9621 . . . . . 6  |-  ( ph  ->  ( ( 1  /  A )  -  1 )  e.  RR+ )
1716rpreccld 9635 . . . . 5  |-  ( ph  ->  ( 1  /  (
( 1  /  A
)  -  1 ) )  e.  RR+ )
1817, 7rpdivcld 9642 . . . 4  |-  ( ph  ->  ( ( 1  / 
( ( 1  /  A )  -  1 ) )  /  A
)  e.  RR+ )
19 fveq2 5481 . . . . . . . 8  |-  ( k  =  1  ->  ( F `  k )  =  ( F ` 
1 ) )
2019eleq1d 2233 . . . . . . 7  |-  ( k  =  1  ->  (
( F `  k
)  e.  CC  <->  ( F `  1 )  e.  CC ) )
213ralrimiva 2537 . . . . . . 7  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  CC )
22 1nn 8860 . . . . . . . 8  |-  1  e.  NN
2322a1i 9 . . . . . . 7  |-  ( ph  ->  1  e.  NN )
2420, 21, 23rspcdva 2831 . . . . . 6  |-  ( ph  ->  ( F `  1
)  e.  CC )
2524abscld 11113 . . . . 5  |-  ( ph  ->  ( abs `  ( F `  1 )
)  e.  RR )
2624absge0d 11116 . . . . 5  |-  ( ph  ->  0  <_  ( abs `  ( F `  1
) ) )
2725, 26ge0p1rpd 9655 . . . 4  |-  ( ph  ->  ( ( abs `  ( F `  1 )
)  +  1 )  e.  RR+ )
2818, 27rpmulcld 9641 . . 3  |-  ( ph  ->  ( ( ( 1  /  ( ( 1  /  A )  - 
1 ) )  /  A )  x.  (
( abs `  ( F `  1 )
)  +  1 ) )  e.  RR+ )
299, 5resubcld 8271 . . . . 5  |-  ( ph  ->  ( 1  -  A
)  e.  RR )
305, 9posdifd 8422 . . . . . 6  |-  ( ph  ->  ( A  <  1  <->  0  <  ( 1  -  A ) ) )
3111, 30mpbid 146 . . . . 5  |-  ( ph  ->  0  <  ( 1  -  A ) )
3229, 31elrpd 9621 . . . 4  |-  ( ph  ->  ( 1  -  A
)  e.  RR+ )
337, 32rpdivcld 9642 . . 3  |-  ( ph  ->  ( A  /  (
1  -  A ) )  e.  RR+ )
3428, 33rpmulcld 9641 . 2  |-  ( ph  ->  ( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1 )
)  +  1 ) )  x.  ( A  /  ( 1  -  A ) ) )  e.  RR+ )
355adantr 274 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  n  e.  ( ZZ>= `  m )
) )  ->  A  e.  RR )
3611adantr 274 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  n  e.  ( ZZ>= `  m )
) )  ->  A  <  1 )
376adantr 274 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  n  e.  ( ZZ>= `  m )
) )  ->  0  <  A )
383adantlr 469 . . . 4  |-  ( ( ( ph  /\  (
m  e.  NN  /\  n  e.  ( ZZ>= `  m ) ) )  /\  k  e.  NN )  ->  ( F `  k )  e.  CC )
39 cvgratnn.7 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
4039adantlr 469 . . . 4  |-  ( ( ( ph  /\  (
m  e.  NN  /\  n  e.  ( ZZ>= `  m ) ) )  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k )
) ) )
41 simprl 521 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  n  e.  ( ZZ>= `  m )
) )  ->  m  e.  NN )
42 simprr 522 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  n  e.  ( ZZ>= `  m )
) )  ->  n  e.  ( ZZ>= `  m )
)
4335, 36, 37, 38, 40, 41, 42cvgratnnlemrate 11461 . . 3  |-  ( (
ph  /\  ( m  e.  NN  /\  n  e.  ( ZZ>= `  m )
) )  ->  ( abs `  ( (  seq 1 (  +  ,  F ) `  n
)  -  (  seq 1 (  +  ,  F ) `  m
) ) )  < 
( ( ( ( ( 1  /  (
( 1  /  A
)  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1
) )  +  1 ) )  x.  ( A  /  ( 1  -  A ) ) )  /  m ) )
4443ralrimivva 2546 . 2  |-  ( ph  ->  A. m  e.  NN  A. n  e.  ( ZZ>= `  m ) ( abs `  ( (  seq 1
(  +  ,  F
) `  n )  -  (  seq 1
(  +  ,  F
) `  m )
) )  <  (
( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) )  /  A )  x.  ( ( abs `  ( F `  1 )
)  +  1 ) )  x.  ( A  /  ( 1  -  A ) ) )  /  m ) )
454, 34, 44climcvg1n 11281 1  |-  ( ph  ->  seq 1 (  +  ,  F )  e. 
dom 
~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1342    e. wcel 2135   class class class wbr 3977   dom cdm 4599   ` cfv 5183  (class class class)co 5837   CCcc 7743   RRcr 7744   0cc0 7745   1c1 7746    + caddc 7748    x. cmul 7750    < clt 7925    <_ cle 7926    - cmin 8061    / cdiv 8560   NNcn 8849   ZZ>=cuz 9458    seqcseq 10371   abscabs 10929    ~~> cli 11209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4092  ax-sep 4095  ax-nul 4103  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-iinf 4560  ax-cnex 7836  ax-resscn 7837  ax-1cn 7838  ax-1re 7839  ax-icn 7840  ax-addcl 7841  ax-addrcl 7842  ax-mulcl 7843  ax-mulrcl 7844  ax-addcom 7845  ax-mulcom 7846  ax-addass 7847  ax-mulass 7848  ax-distr 7849  ax-i2m1 7850  ax-0lt1 7851  ax-1rid 7852  ax-0id 7853  ax-rnegex 7854  ax-precex 7855  ax-cnre 7856  ax-pre-ltirr 7857  ax-pre-ltwlin 7858  ax-pre-lttrn 7859  ax-pre-apti 7860  ax-pre-ltadd 7861  ax-pre-mulgt0 7862  ax-pre-mulext 7863  ax-arch 7864  ax-caucvg 7865
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2724  df-sbc 2948  df-csb 3042  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-nul 3406  df-if 3517  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-int 3820  df-iun 3863  df-br 3978  df-opab 4039  df-mpt 4040  df-tr 4076  df-id 4266  df-po 4269  df-iso 4270  df-iord 4339  df-on 4341  df-ilim 4342  df-suc 4344  df-iom 4563  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-res 4611  df-ima 4612  df-iota 5148  df-fun 5185  df-fn 5186  df-f 5187  df-f1 5188  df-fo 5189  df-f1o 5190  df-fv 5191  df-isom 5192  df-riota 5793  df-ov 5840  df-oprab 5841  df-mpo 5842  df-1st 6101  df-2nd 6102  df-recs 6265  df-irdg 6330  df-frec 6351  df-1o 6376  df-oadd 6380  df-er 6493  df-en 6699  df-dom 6700  df-fin 6701  df-pnf 7927  df-mnf 7928  df-xr 7929  df-ltxr 7930  df-le 7931  df-sub 8063  df-neg 8064  df-reap 8465  df-ap 8472  df-div 8561  df-inn 8850  df-2 8908  df-3 8909  df-4 8910  df-n0 9107  df-z 9184  df-uz 9459  df-q 9550  df-rp 9582  df-ico 9822  df-fz 9937  df-fzo 10069  df-seqfrec 10372  df-exp 10446  df-ihash 10679  df-cj 10774  df-re 10775  df-im 10776  df-rsqrt 10930  df-abs 10931  df-clim 11210  df-sumdc 11285
This theorem is referenced by:  cvgratz  11463
  Copyright terms: Public domain W3C validator