ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgrmhm Unicode version

Theorem srgrmhm 13365
Description: Right-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srglmhm.b  |-  B  =  ( Base `  R
)
srglmhm.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
srgrmhm  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
x  e.  B  |->  ( x  .x.  X ) )  e.  ( R MndHom  R ) )
Distinct variable groups:    x, B    x, R    x, X    x,  .x.

Proof of Theorem srgrmhm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgmnd 13338 . . . 4  |-  ( R  e. SRing  ->  R  e.  Mnd )
21, 1jca 306 . . 3  |-  ( R  e. SRing  ->  ( R  e. 
Mnd  /\  R  e.  Mnd ) )
32adantr 276 . 2  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  ( R  e.  Mnd  /\  R  e.  Mnd ) )
4 srglmhm.b . . . . . . 7  |-  B  =  ( Base `  R
)
5 srglmhm.t . . . . . . 7  |-  .x.  =  ( .r `  R )
64, 5srgcl 13341 . . . . . 6  |-  ( ( R  e. SRing  /\  x  e.  B  /\  X  e.  B )  ->  (
x  .x.  X )  e.  B )
763com23 1211 . . . . 5  |-  ( ( R  e. SRing  /\  X  e.  B  /\  x  e.  B )  ->  (
x  .x.  X )  e.  B )
873expa 1205 . . . 4  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  x  e.  B )  ->  (
x  .x.  X )  e.  B )
98fmpttd 5692 . . 3  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
x  e.  B  |->  ( x  .x.  X ) ) : B --> B )
10 3anrot 985 . . . . . . . 8  |-  ( ( X  e.  B  /\  a  e.  B  /\  b  e.  B )  <->  ( a  e.  B  /\  b  e.  B  /\  X  e.  B )
)
11 3anass 984 . . . . . . . 8  |-  ( ( X  e.  B  /\  a  e.  B  /\  b  e.  B )  <->  ( X  e.  B  /\  ( a  e.  B  /\  b  e.  B
) ) )
1210, 11bitr3i 186 . . . . . . 7  |-  ( ( a  e.  B  /\  b  e.  B  /\  X  e.  B )  <->  ( X  e.  B  /\  ( a  e.  B  /\  b  e.  B
) ) )
13 eqid 2189 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
144, 13, 5srgdir 13346 . . . . . . 7  |-  ( ( R  e. SRing  /\  (
a  e.  B  /\  b  e.  B  /\  X  e.  B )
)  ->  ( (
a ( +g  `  R
) b )  .x.  X )  =  ( ( a  .x.  X
) ( +g  `  R
) ( b  .x.  X ) ) )
1512, 14sylan2br 288 . . . . . 6  |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  ( a  e.  B  /\  b  e.  B
) ) )  -> 
( ( a ( +g  `  R ) b )  .x.  X
)  =  ( ( a  .x.  X ) ( +g  `  R
) ( b  .x.  X ) ) )
1615anassrs 400 . . . . 5  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( (
a ( +g  `  R
) b )  .x.  X )  =  ( ( a  .x.  X
) ( +g  `  R
) ( b  .x.  X ) ) )
17 eqid 2189 . . . . . 6  |-  ( x  e.  B  |->  ( x 
.x.  X ) )  =  ( x  e.  B  |->  ( x  .x.  X ) )
18 oveq1 5904 . . . . . 6  |-  ( x  =  ( a ( +g  `  R ) b )  ->  (
x  .x.  X )  =  ( ( a ( +g  `  R
) b )  .x.  X ) )
194, 13srgacl 13353 . . . . . . . 8  |-  ( ( R  e. SRing  /\  a  e.  B  /\  b  e.  B )  ->  (
a ( +g  `  R
) b )  e.  B )
20193expb 1206 . . . . . . 7  |-  ( ( R  e. SRing  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( a
( +g  `  R ) b )  e.  B
)
2120adantlr 477 . . . . . 6  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( a
( +g  `  R ) b )  e.  B
)
22 simpll 527 . . . . . . 7  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  R  e. SRing )
23 simplr 528 . . . . . . 7  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  X  e.  B )
244, 5srgcl 13341 . . . . . . 7  |-  ( ( R  e. SRing  /\  (
a ( +g  `  R
) b )  e.  B  /\  X  e.  B )  ->  (
( a ( +g  `  R ) b ) 
.x.  X )  e.  B )
2522, 21, 23, 24syl3anc 1249 . . . . . 6  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( (
a ( +g  `  R
) b )  .x.  X )  e.  B
)
2617, 18, 21, 25fvmptd3 5630 . . . . 5  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( (
x  e.  B  |->  ( x  .x.  X ) ) `  ( a ( +g  `  R
) b ) )  =  ( ( a ( +g  `  R
) b )  .x.  X ) )
27 oveq1 5904 . . . . . . 7  |-  ( x  =  a  ->  (
x  .x.  X )  =  ( a  .x.  X ) )
28 simprl 529 . . . . . . 7  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  a  e.  B )
294, 5srgcl 13341 . . . . . . . 8  |-  ( ( R  e. SRing  /\  a  e.  B  /\  X  e.  B )  ->  (
a  .x.  X )  e.  B )
3022, 28, 23, 29syl3anc 1249 . . . . . . 7  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( a  .x.  X )  e.  B
)
3117, 27, 28, 30fvmptd3 5630 . . . . . 6  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( (
x  e.  B  |->  ( x  .x.  X ) ) `  a )  =  ( a  .x.  X ) )
32 oveq1 5904 . . . . . . 7  |-  ( x  =  b  ->  (
x  .x.  X )  =  ( b  .x.  X ) )
33 simprr 531 . . . . . . 7  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  b  e.  B )
344, 5srgcl 13341 . . . . . . . 8  |-  ( ( R  e. SRing  /\  b  e.  B  /\  X  e.  B )  ->  (
b  .x.  X )  e.  B )
3522, 33, 23, 34syl3anc 1249 . . . . . . 7  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( b  .x.  X )  e.  B
)
3617, 32, 33, 35fvmptd3 5630 . . . . . 6  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( (
x  e.  B  |->  ( x  .x.  X ) ) `  b )  =  ( b  .x.  X ) )
3731, 36oveq12d 5915 . . . . 5  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( (
( x  e.  B  |->  ( x  .x.  X
) ) `  a
) ( +g  `  R
) ( ( x  e.  B  |->  ( x 
.x.  X ) ) `
 b ) )  =  ( ( a 
.x.  X ) ( +g  `  R ) ( b  .x.  X
) ) )
3816, 26, 373eqtr4d 2232 . . . 4  |-  ( ( ( R  e. SRing  /\  X  e.  B )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( (
x  e.  B  |->  ( x  .x.  X ) ) `  ( a ( +g  `  R
) b ) )  =  ( ( ( x  e.  B  |->  ( x  .x.  X ) ) `  a ) ( +g  `  R
) ( ( x  e.  B  |->  ( x 
.x.  X ) ) `
 b ) ) )
3938ralrimivva 2572 . . 3  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  A. a  e.  B  A. b  e.  B  ( (
x  e.  B  |->  ( x  .x.  X ) ) `  ( a ( +g  `  R
) b ) )  =  ( ( ( x  e.  B  |->  ( x  .x.  X ) ) `  a ) ( +g  `  R
) ( ( x  e.  B  |->  ( x 
.x.  X ) ) `
 b ) ) )
40 oveq1 5904 . . . . 5  |-  ( x  =  ( 0g `  R )  ->  (
x  .x.  X )  =  ( ( 0g
`  R )  .x.  X ) )
41 eqid 2189 . . . . . . 7  |-  ( 0g
`  R )  =  ( 0g `  R
)
424, 41srg0cl 13348 . . . . . 6  |-  ( R  e. SRing  ->  ( 0g `  R )  e.  B
)
4342adantr 276 . . . . 5  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  ( 0g `  R )  e.  B )
44 simpl 109 . . . . . 6  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  R  e. SRing )
45 simpr 110 . . . . . 6  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  X  e.  B )
464, 5srgcl 13341 . . . . . 6  |-  ( ( R  e. SRing  /\  ( 0g `  R )  e.  B  /\  X  e.  B )  ->  (
( 0g `  R
)  .x.  X )  e.  B )
4744, 43, 45, 46syl3anc 1249 . . . . 5  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
( 0g `  R
)  .x.  X )  e.  B )
4817, 40, 43, 47fvmptd3 5630 . . . 4  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
( x  e.  B  |->  ( x  .x.  X
) ) `  ( 0g `  R ) )  =  ( ( 0g
`  R )  .x.  X ) )
494, 5, 41srglz 13356 . . . 4  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
( 0g `  R
)  .x.  X )  =  ( 0g `  R ) )
5048, 49eqtrd 2222 . . 3  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
( x  e.  B  |->  ( x  .x.  X
) ) `  ( 0g `  R ) )  =  ( 0g `  R ) )
519, 39, 503jca 1179 . 2  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
( x  e.  B  |->  ( x  .x.  X
) ) : B --> B  /\  A. a  e.  B  A. b  e.  B  ( ( x  e.  B  |->  ( x 
.x.  X ) ) `
 ( a ( +g  `  R ) b ) )  =  ( ( ( x  e.  B  |->  ( x 
.x.  X ) ) `
 a ) ( +g  `  R ) ( ( x  e.  B  |->  ( x  .x.  X ) ) `  b ) )  /\  ( ( x  e.  B  |->  ( x  .x.  X ) ) `  ( 0g `  R ) )  =  ( 0g
`  R ) ) )
524, 4, 13, 13, 41, 41ismhm 12928 . 2  |-  ( ( x  e.  B  |->  ( x  .x.  X ) )  e.  ( R MndHom  R )  <->  ( ( R  e.  Mnd  /\  R  e.  Mnd )  /\  (
( x  e.  B  |->  ( x  .x.  X
) ) : B --> B  /\  A. a  e.  B  A. b  e.  B  ( ( x  e.  B  |->  ( x 
.x.  X ) ) `
 ( a ( +g  `  R ) b ) )  =  ( ( ( x  e.  B  |->  ( x 
.x.  X ) ) `
 a ) ( +g  `  R ) ( ( x  e.  B  |->  ( x  .x.  X ) ) `  b ) )  /\  ( ( x  e.  B  |->  ( x  .x.  X ) ) `  ( 0g `  R ) )  =  ( 0g
`  R ) ) ) )
533, 51, 52sylanbrc 417 1  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
x  e.  B  |->  ( x  .x.  X ) )  e.  ( R MndHom  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160   A.wral 2468    |-> cmpt 4079   -->wf 5231   ` cfv 5235  (class class class)co 5897   Basecbs 12515   +g cplusg 12592   .rcmulr 12593   0gc0g 12764   Mndcmnd 12892   MndHom cmhm 12924  SRingcsrg 13334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-pre-ltirr 7954  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-map 6677  df-pnf 8025  df-mnf 8026  df-ltxr 8028  df-inn 8951  df-2 9009  df-3 9010  df-ndx 12518  df-slot 12519  df-base 12521  df-sets 12522  df-plusg 12605  df-mulr 12606  df-0g 12766  df-mgm 12835  df-sgrp 12880  df-mnd 12893  df-mhm 12926  df-cmn 13242  df-mgp 13292  df-srg 13335
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator