| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > srgrmhm | Unicode version | ||
| Description: Right-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism. (Contributed by AV, 23-Aug-2019.) |
| Ref | Expression |
|---|---|
| srglmhm.b |
|
| srglmhm.t |
|
| Ref | Expression |
|---|---|
| srgrmhm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgmnd 13671 |
. . . 4
| |
| 2 | 1, 1 | jca 306 |
. . 3
|
| 3 | 2 | adantr 276 |
. 2
|
| 4 | srglmhm.b |
. . . . . . 7
| |
| 5 | srglmhm.t |
. . . . . . 7
| |
| 6 | 4, 5 | srgcl 13674 |
. . . . . 6
|
| 7 | 6 | 3com23 1211 |
. . . . 5
|
| 8 | 7 | 3expa 1205 |
. . . 4
|
| 9 | 8 | fmpttd 5734 |
. . 3
|
| 10 | 3anrot 985 |
. . . . . . . 8
| |
| 11 | 3anass 984 |
. . . . . . . 8
| |
| 12 | 10, 11 | bitr3i 186 |
. . . . . . 7
|
| 13 | eqid 2204 |
. . . . . . . 8
| |
| 14 | 4, 13, 5 | srgdir 13679 |
. . . . . . 7
|
| 15 | 12, 14 | sylan2br 288 |
. . . . . 6
|
| 16 | 15 | anassrs 400 |
. . . . 5
|
| 17 | eqid 2204 |
. . . . . 6
| |
| 18 | oveq1 5950 |
. . . . . 6
| |
| 19 | 4, 13 | srgacl 13686 |
. . . . . . . 8
|
| 20 | 19 | 3expb 1206 |
. . . . . . 7
|
| 21 | 20 | adantlr 477 |
. . . . . 6
|
| 22 | simpll 527 |
. . . . . . 7
| |
| 23 | simplr 528 |
. . . . . . 7
| |
| 24 | 4, 5 | srgcl 13674 |
. . . . . . 7
|
| 25 | 22, 21, 23, 24 | syl3anc 1249 |
. . . . . 6
|
| 26 | 17, 18, 21, 25 | fvmptd3 5672 |
. . . . 5
|
| 27 | oveq1 5950 |
. . . . . . 7
| |
| 28 | simprl 529 |
. . . . . . 7
| |
| 29 | 4, 5 | srgcl 13674 |
. . . . . . . 8
|
| 30 | 22, 28, 23, 29 | syl3anc 1249 |
. . . . . . 7
|
| 31 | 17, 27, 28, 30 | fvmptd3 5672 |
. . . . . 6
|
| 32 | oveq1 5950 |
. . . . . . 7
| |
| 33 | simprr 531 |
. . . . . . 7
| |
| 34 | 4, 5 | srgcl 13674 |
. . . . . . . 8
|
| 35 | 22, 33, 23, 34 | syl3anc 1249 |
. . . . . . 7
|
| 36 | 17, 32, 33, 35 | fvmptd3 5672 |
. . . . . 6
|
| 37 | 31, 36 | oveq12d 5961 |
. . . . 5
|
| 38 | 16, 26, 37 | 3eqtr4d 2247 |
. . . 4
|
| 39 | 38 | ralrimivva 2587 |
. . 3
|
| 40 | oveq1 5950 |
. . . . 5
| |
| 41 | eqid 2204 |
. . . . . . 7
| |
| 42 | 4, 41 | srg0cl 13681 |
. . . . . 6
|
| 43 | 42 | adantr 276 |
. . . . 5
|
| 44 | simpl 109 |
. . . . . 6
| |
| 45 | simpr 110 |
. . . . . 6
| |
| 46 | 4, 5 | srgcl 13674 |
. . . . . 6
|
| 47 | 44, 43, 45, 46 | syl3anc 1249 |
. . . . 5
|
| 48 | 17, 40, 43, 47 | fvmptd3 5672 |
. . . 4
|
| 49 | 4, 5, 41 | srglz 13689 |
. . . 4
|
| 50 | 48, 49 | eqtrd 2237 |
. . 3
|
| 51 | 9, 39, 50 | 3jca 1179 |
. 2
|
| 52 | 4, 4, 13, 13, 41, 41 | ismhm 13235 |
. 2
|
| 53 | 3, 51, 52 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-map 6736 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-inn 9036 df-2 9094 df-3 9095 df-ndx 12777 df-slot 12778 df-base 12780 df-sets 12781 df-plusg 12864 df-mulr 12865 df-0g 13032 df-mgm 13130 df-sgrp 13176 df-mnd 13191 df-mhm 13233 df-cmn 13564 df-mgp 13625 df-srg 13668 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |