ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgmulgass Unicode version

Theorem srgmulgass 12965
Description: An associative property between group multiple and ring multiplication for semirings. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgmulgass.b  |-  B  =  ( Base `  R
)
srgmulgass.m  |-  .x.  =  (.g
`  R )
srgmulgass.t  |-  .X.  =  ( .r `  R )
Assertion
Ref Expression
srgmulgass  |-  ( ( R  e. SRing  /\  ( N  e.  NN0  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( N  .x.  X )  .X.  Y
)  =  ( N 
.x.  ( X  .X.  Y ) ) )

Proof of Theorem srgmulgass
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5872 . . . . . . . 8  |-  ( x  =  0  ->  (
x  .x.  X )  =  ( 0  .x. 
X ) )
21oveq1d 5880 . . . . . . 7  |-  ( x  =  0  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( 0 
.x.  X )  .X.  Y ) )
3 oveq1 5872 . . . . . . 7  |-  ( x  =  0  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( 0  .x.  ( X  .X.  Y ) ) )
42, 3eqeq12d 2190 . . . . . 6  |-  ( x  =  0  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( (
0  .x.  X )  .X.  Y )  =  ( 0  .x.  ( X 
.X.  Y ) ) ) )
54imbi2d 230 . . . . 5  |-  ( x  =  0  ->  (
( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  ->  ( (
x  .x.  X )  .X.  Y )  =  ( x  .x.  ( X 
.X.  Y ) ) )  <->  ( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  -> 
( ( 0  .x. 
X )  .X.  Y
)  =  ( 0 
.x.  ( X  .X.  Y ) ) ) ) )
6 oveq1 5872 . . . . . . . 8  |-  ( x  =  y  ->  (
x  .x.  X )  =  ( y  .x.  X ) )
76oveq1d 5880 . . . . . . 7  |-  ( x  =  y  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( y 
.x.  X )  .X.  Y ) )
8 oveq1 5872 . . . . . . 7  |-  ( x  =  y  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( y  .x.  ( X  .X.  Y ) ) )
97, 8eqeq12d 2190 . . . . . 6  |-  ( x  =  y  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( (
y  .x.  X )  .X.  Y )  =  ( y  .x.  ( X 
.X.  Y ) ) ) )
109imbi2d 230 . . . . 5  |-  ( x  =  y  ->  (
( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  ->  ( (
x  .x.  X )  .X.  Y )  =  ( x  .x.  ( X 
.X.  Y ) ) )  <->  ( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  -> 
( ( y  .x.  X )  .X.  Y
)  =  ( y 
.x.  ( X  .X.  Y ) ) ) ) )
11 oveq1 5872 . . . . . . . 8  |-  ( x  =  ( y  +  1 )  ->  (
x  .x.  X )  =  ( ( y  +  1 )  .x.  X ) )
1211oveq1d 5880 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( ( y  +  1 ) 
.x.  X )  .X.  Y ) )
13 oveq1 5872 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( ( y  +  1 )  .x.  ( X  .X.  Y ) ) )
1412, 13eqeq12d 2190 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( (
( y  +  1 )  .x.  X ) 
.X.  Y )  =  ( ( y  +  1 )  .x.  ( X  .X.  Y ) ) ) )
1514imbi2d 230 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  ->  ( (
x  .x.  X )  .X.  Y )  =  ( x  .x.  ( X 
.X.  Y ) ) )  <->  ( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  -> 
( ( ( y  +  1 )  .x.  X )  .X.  Y
)  =  ( ( y  +  1 ) 
.x.  ( X  .X.  Y ) ) ) ) )
16 oveq1 5872 . . . . . . . 8  |-  ( x  =  N  ->  (
x  .x.  X )  =  ( N  .x.  X ) )
1716oveq1d 5880 . . . . . . 7  |-  ( x  =  N  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( N 
.x.  X )  .X.  Y ) )
18 oveq1 5872 . . . . . . 7  |-  ( x  =  N  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( N  .x.  ( X  .X.  Y ) ) )
1917, 18eqeq12d 2190 . . . . . 6  |-  ( x  =  N  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( ( N  .x.  X )  .X.  Y )  =  ( N  .x.  ( X 
.X.  Y ) ) ) )
2019imbi2d 230 . . . . 5  |-  ( x  =  N  ->  (
( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  ->  ( (
x  .x.  X )  .X.  Y )  =  ( x  .x.  ( X 
.X.  Y ) ) )  <->  ( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  -> 
( ( N  .x.  X )  .X.  Y
)  =  ( N 
.x.  ( X  .X.  Y ) ) ) ) )
21 simpr 110 . . . . . . 7  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  R  e. SRing )
22 simpr 110 . . . . . . . 8  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
2322adantr 276 . . . . . . 7  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  Y  e.  B
)
24 srgmulgass.b . . . . . . . 8  |-  B  =  ( Base `  R
)
25 srgmulgass.t . . . . . . . 8  |-  .X.  =  ( .r `  R )
26 eqid 2175 . . . . . . . 8  |-  ( 0g
`  R )  =  ( 0g `  R
)
2724, 25, 26srglz 12961 . . . . . . 7  |-  ( ( R  e. SRing  /\  Y  e.  B )  ->  (
( 0g `  R
)  .X.  Y )  =  ( 0g `  R ) )
2821, 23, 27syl2anc 411 . . . . . 6  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( ( 0g
`  R )  .X.  Y )  =  ( 0g `  R ) )
29 simpl 109 . . . . . . . . 9  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
3029adantr 276 . . . . . . . 8  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  X  e.  B
)
31 srgmulgass.m . . . . . . . . 9  |-  .x.  =  (.g
`  R )
3224, 26, 31mulg0 12847 . . . . . . . 8  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  R ) )
3330, 32syl 14 . . . . . . 7  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( 0  .x. 
X )  =  ( 0g `  R ) )
3433oveq1d 5880 . . . . . 6  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( ( 0 
.x.  X )  .X.  Y )  =  ( ( 0g `  R
)  .X.  Y )
)
3524, 25srgcl 12946 . . . . . . . 8  |-  ( ( R  e. SRing  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .X.  Y )  e.  B )
3621, 30, 23, 35syl3anc 1238 . . . . . . 7  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( X  .X.  Y )  e.  B
)
3724, 26, 31mulg0 12847 . . . . . . 7  |-  ( ( X  .X.  Y )  e.  B  ->  ( 0 
.x.  ( X  .X.  Y ) )  =  ( 0g `  R
) )
3836, 37syl 14 . . . . . 6  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( 0  .x.  ( X  .X.  Y
) )  =  ( 0g `  R ) )
3928, 34, 383eqtr4d 2218 . . . . 5  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( ( 0 
.x.  X )  .X.  Y )  =  ( 0  .x.  ( X 
.X.  Y ) ) )
40 srgmnd 12943 . . . . . . . . . . . . . 14  |-  ( R  e. SRing  ->  R  e.  Mnd )
4140adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  R  e.  Mnd )
4241adantl 277 . . . . . . . . . . . 12  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  R  e.  Mnd )
43 simpl 109 . . . . . . . . . . . 12  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  y  e.  NN0 )
4430adantl 277 . . . . . . . . . . . 12  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  X  e.  B )
45 eqid 2175 . . . . . . . . . . . . 13  |-  ( +g  `  R )  =  ( +g  `  R )
4624, 31, 45mulgnn0p1 12853 . . . . . . . . . . . 12  |-  ( ( R  e.  Mnd  /\  y  e.  NN0  /\  X  e.  B )  ->  (
( y  +  1 )  .x.  X )  =  ( ( y 
.x.  X ) ( +g  `  R ) X ) )
4742, 43, 44, 46syl3anc 1238 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  (
( y  +  1 )  .x.  X )  =  ( ( y 
.x.  X ) ( +g  `  R ) X ) )
4847oveq1d 5880 . . . . . . . . . 10  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  (
( ( y  +  1 )  .x.  X
)  .X.  Y )  =  ( ( ( y  .x.  X ) ( +g  `  R
) X )  .X.  Y ) )
4921adantl 277 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  R  e. SRing )
5024, 31mulgnn0cl 12858 . . . . . . . . . . . 12  |-  ( ( R  e.  Mnd  /\  y  e.  NN0  /\  X  e.  B )  ->  (
y  .x.  X )  e.  B )
5142, 43, 44, 50syl3anc 1238 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  (
y  .x.  X )  e.  B )
5223adantl 277 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  Y  e.  B )
5324, 45, 25srgdir 12951 . . . . . . . . . . 11  |-  ( ( R  e. SRing  /\  (
( y  .x.  X
)  e.  B  /\  X  e.  B  /\  Y  e.  B )
)  ->  ( (
( y  .x.  X
) ( +g  `  R
) X )  .X.  Y )  =  ( ( ( y  .x.  X )  .X.  Y
) ( +g  `  R
) ( X  .X.  Y ) ) )
5449, 51, 44, 52, 53syl13anc 1240 . . . . . . . . . 10  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  (
( ( y  .x.  X ) ( +g  `  R ) X ) 
.X.  Y )  =  ( ( ( y 
.x.  X )  .X.  Y ) ( +g  `  R ) ( X 
.X.  Y ) ) )
5548, 54eqtrd 2208 . . . . . . . . 9  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  (
( ( y  +  1 )  .x.  X
)  .X.  Y )  =  ( ( ( y  .x.  X ) 
.X.  Y ) ( +g  `  R ) ( X  .X.  Y
) ) )
5655adantr 276 . . . . . . . 8  |-  ( ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  /\  (
( y  .x.  X
)  .X.  Y )  =  ( y  .x.  ( X  .X.  Y ) ) )  ->  (
( ( y  +  1 )  .x.  X
)  .X.  Y )  =  ( ( ( y  .x.  X ) 
.X.  Y ) ( +g  `  R ) ( X  .X.  Y
) ) )
57 oveq1 5872 . . . . . . . . 9  |-  ( ( ( y  .x.  X
)  .X.  Y )  =  ( y  .x.  ( X  .X.  Y ) )  ->  ( (
( y  .x.  X
)  .X.  Y )
( +g  `  R ) ( X  .X.  Y
) )  =  ( ( y  .x.  ( X  .X.  Y ) ) ( +g  `  R
) ( X  .X.  Y ) ) )
58353expb 1204 . . . . . . . . . . . . 13  |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  Y  e.  B )
)  ->  ( X  .X.  Y )  e.  B
)
5958ancoms 268 . . . . . . . . . . . 12  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( X  .X.  Y )  e.  B
)
6059adantl 277 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  ( X  .X.  Y )  e.  B )
6124, 31, 45mulgnn0p1 12853 . . . . . . . . . . 11  |-  ( ( R  e.  Mnd  /\  y  e.  NN0  /\  ( X  .X.  Y )  e.  B )  ->  (
( y  +  1 )  .x.  ( X 
.X.  Y ) )  =  ( ( y 
.x.  ( X  .X.  Y ) ) ( +g  `  R ) ( X  .X.  Y
) ) )
6242, 43, 60, 61syl3anc 1238 . . . . . . . . . 10  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  (
( y  +  1 )  .x.  ( X 
.X.  Y ) )  =  ( ( y 
.x.  ( X  .X.  Y ) ) ( +g  `  R ) ( X  .X.  Y
) ) )
6362eqcomd 2181 . . . . . . . . 9  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  (
( y  .x.  ( X  .X.  Y ) ) ( +g  `  R
) ( X  .X.  Y ) )  =  ( ( y  +  1 )  .x.  ( X  .X.  Y ) ) )
6457, 63sylan9eqr 2230 . . . . . . . 8  |-  ( ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  /\  (
( y  .x.  X
)  .X.  Y )  =  ( y  .x.  ( X  .X.  Y ) ) )  ->  (
( ( y  .x.  X )  .X.  Y
) ( +g  `  R
) ( X  .X.  Y ) )  =  ( ( y  +  1 )  .x.  ( X  .X.  Y ) ) )
6556, 64eqtrd 2208 . . . . . . 7  |-  ( ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  /\  (
( y  .x.  X
)  .X.  Y )  =  ( y  .x.  ( X  .X.  Y ) ) )  ->  (
( ( y  +  1 )  .x.  X
)  .X.  Y )  =  ( ( y  +  1 )  .x.  ( X  .X.  Y ) ) )
6665exp31 364 . . . . . 6  |-  ( y  e.  NN0  ->  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( ( ( y  .x.  X ) 
.X.  Y )  =  ( y  .x.  ( X  .X.  Y ) )  ->  ( ( ( y  +  1 ) 
.x.  X )  .X.  Y )  =  ( ( y  +  1 )  .x.  ( X 
.X.  Y ) ) ) ) )
6766a2d 26 . . . . 5  |-  ( y  e.  NN0  ->  ( ( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  ->  ( (
y  .x.  X )  .X.  Y )  =  ( y  .x.  ( X 
.X.  Y ) ) )  ->  ( (
( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( ( ( y  +  1 ) 
.x.  X )  .X.  Y )  =  ( ( y  +  1 )  .x.  ( X 
.X.  Y ) ) ) ) )
685, 10, 15, 20, 39, 67nn0ind 9338 . . . 4  |-  ( N  e.  NN0  ->  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( ( N 
.x.  X )  .X.  Y )  =  ( N  .x.  ( X 
.X.  Y ) ) ) )
6968expd 258 . . 3  |-  ( N  e.  NN0  ->  ( ( X  e.  B  /\  Y  e.  B )  ->  ( R  e. SRing  ->  ( ( N  .x.  X
)  .X.  Y )  =  ( N  .x.  ( X  .X.  Y ) ) ) ) )
70693impib 1201 . 2  |-  ( ( N  e.  NN0  /\  X  e.  B  /\  Y  e.  B )  ->  ( R  e. SRing  ->  ( ( N  .x.  X
)  .X.  Y )  =  ( N  .x.  ( X  .X.  Y ) ) ) )
7170impcom 125 1  |-  ( ( R  e. SRing  /\  ( N  e.  NN0  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( N  .x.  X )  .X.  Y
)  =  ( N 
.x.  ( X  .X.  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2146   ` cfv 5208  (class class class)co 5865   0cc0 7786   1c1 7787    + caddc 7789   NN0cn0 9147   Basecbs 12428   +g cplusg 12492   .rcmulr 12493   0gc0g 12626   Mndcmnd 12682  .gcmg 12842  SRingcsrg 12939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8891  df-2 8949  df-3 8950  df-n0 9148  df-z 9225  df-uz 9500  df-seqfrec 10414  df-ndx 12431  df-slot 12432  df-base 12434  df-sets 12435  df-plusg 12505  df-mulr 12506  df-0g 12628  df-mgm 12640  df-sgrp 12673  df-mnd 12683  df-minusg 12742  df-mulg 12843  df-cmn 12886  df-mgp 12926  df-srg 12940
This theorem is referenced by:  srgpcomppsc  12968
  Copyright terms: Public domain W3C validator