ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgmulgass Unicode version

Theorem srgmulgass 13621
Description: An associative property between group multiple and ring multiplication for semirings. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgmulgass.b  |-  B  =  ( Base `  R
)
srgmulgass.m  |-  .x.  =  (.g
`  R )
srgmulgass.t  |-  .X.  =  ( .r `  R )
Assertion
Ref Expression
srgmulgass  |-  ( ( R  e. SRing  /\  ( N  e.  NN0  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( N  .x.  X )  .X.  Y
)  =  ( N 
.x.  ( X  .X.  Y ) ) )

Proof of Theorem srgmulgass
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5932 . . . . . . . 8  |-  ( x  =  0  ->  (
x  .x.  X )  =  ( 0  .x. 
X ) )
21oveq1d 5940 . . . . . . 7  |-  ( x  =  0  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( 0 
.x.  X )  .X.  Y ) )
3 oveq1 5932 . . . . . . 7  |-  ( x  =  0  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( 0  .x.  ( X  .X.  Y ) ) )
42, 3eqeq12d 2211 . . . . . 6  |-  ( x  =  0  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( (
0  .x.  X )  .X.  Y )  =  ( 0  .x.  ( X 
.X.  Y ) ) ) )
54imbi2d 230 . . . . 5  |-  ( x  =  0  ->  (
( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  ->  ( (
x  .x.  X )  .X.  Y )  =  ( x  .x.  ( X 
.X.  Y ) ) )  <->  ( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  -> 
( ( 0  .x. 
X )  .X.  Y
)  =  ( 0 
.x.  ( X  .X.  Y ) ) ) ) )
6 oveq1 5932 . . . . . . . 8  |-  ( x  =  y  ->  (
x  .x.  X )  =  ( y  .x.  X ) )
76oveq1d 5940 . . . . . . 7  |-  ( x  =  y  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( y 
.x.  X )  .X.  Y ) )
8 oveq1 5932 . . . . . . 7  |-  ( x  =  y  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( y  .x.  ( X  .X.  Y ) ) )
97, 8eqeq12d 2211 . . . . . 6  |-  ( x  =  y  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( (
y  .x.  X )  .X.  Y )  =  ( y  .x.  ( X 
.X.  Y ) ) ) )
109imbi2d 230 . . . . 5  |-  ( x  =  y  ->  (
( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  ->  ( (
x  .x.  X )  .X.  Y )  =  ( x  .x.  ( X 
.X.  Y ) ) )  <->  ( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  -> 
( ( y  .x.  X )  .X.  Y
)  =  ( y 
.x.  ( X  .X.  Y ) ) ) ) )
11 oveq1 5932 . . . . . . . 8  |-  ( x  =  ( y  +  1 )  ->  (
x  .x.  X )  =  ( ( y  +  1 )  .x.  X ) )
1211oveq1d 5940 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( ( y  +  1 ) 
.x.  X )  .X.  Y ) )
13 oveq1 5932 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( ( y  +  1 )  .x.  ( X  .X.  Y ) ) )
1412, 13eqeq12d 2211 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( (
( y  +  1 )  .x.  X ) 
.X.  Y )  =  ( ( y  +  1 )  .x.  ( X  .X.  Y ) ) ) )
1514imbi2d 230 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  ->  ( (
x  .x.  X )  .X.  Y )  =  ( x  .x.  ( X 
.X.  Y ) ) )  <->  ( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  -> 
( ( ( y  +  1 )  .x.  X )  .X.  Y
)  =  ( ( y  +  1 ) 
.x.  ( X  .X.  Y ) ) ) ) )
16 oveq1 5932 . . . . . . . 8  |-  ( x  =  N  ->  (
x  .x.  X )  =  ( N  .x.  X ) )
1716oveq1d 5940 . . . . . . 7  |-  ( x  =  N  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( N 
.x.  X )  .X.  Y ) )
18 oveq1 5932 . . . . . . 7  |-  ( x  =  N  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( N  .x.  ( X  .X.  Y ) ) )
1917, 18eqeq12d 2211 . . . . . 6  |-  ( x  =  N  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( ( N  .x.  X )  .X.  Y )  =  ( N  .x.  ( X 
.X.  Y ) ) ) )
2019imbi2d 230 . . . . 5  |-  ( x  =  N  ->  (
( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  ->  ( (
x  .x.  X )  .X.  Y )  =  ( x  .x.  ( X 
.X.  Y ) ) )  <->  ( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  -> 
( ( N  .x.  X )  .X.  Y
)  =  ( N 
.x.  ( X  .X.  Y ) ) ) ) )
21 simpr 110 . . . . . . 7  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  R  e. SRing )
22 simpr 110 . . . . . . . 8  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
2322adantr 276 . . . . . . 7  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  Y  e.  B
)
24 srgmulgass.b . . . . . . . 8  |-  B  =  ( Base `  R
)
25 srgmulgass.t . . . . . . . 8  |-  .X.  =  ( .r `  R )
26 eqid 2196 . . . . . . . 8  |-  ( 0g
`  R )  =  ( 0g `  R
)
2724, 25, 26srglz 13617 . . . . . . 7  |-  ( ( R  e. SRing  /\  Y  e.  B )  ->  (
( 0g `  R
)  .X.  Y )  =  ( 0g `  R ) )
2821, 23, 27syl2anc 411 . . . . . 6  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( ( 0g
`  R )  .X.  Y )  =  ( 0g `  R ) )
29 simpl 109 . . . . . . . . 9  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
3029adantr 276 . . . . . . . 8  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  X  e.  B
)
31 srgmulgass.m . . . . . . . . 9  |-  .x.  =  (.g
`  R )
3224, 26, 31mulg0 13331 . . . . . . . 8  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  R ) )
3330, 32syl 14 . . . . . . 7  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( 0  .x. 
X )  =  ( 0g `  R ) )
3433oveq1d 5940 . . . . . 6  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( ( 0 
.x.  X )  .X.  Y )  =  ( ( 0g `  R
)  .X.  Y )
)
3524, 25srgcl 13602 . . . . . . . 8  |-  ( ( R  e. SRing  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .X.  Y )  e.  B )
3621, 30, 23, 35syl3anc 1249 . . . . . . 7  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( X  .X.  Y )  e.  B
)
3724, 26, 31mulg0 13331 . . . . . . 7  |-  ( ( X  .X.  Y )  e.  B  ->  ( 0 
.x.  ( X  .X.  Y ) )  =  ( 0g `  R
) )
3836, 37syl 14 . . . . . 6  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( 0  .x.  ( X  .X.  Y
) )  =  ( 0g `  R ) )
3928, 34, 383eqtr4d 2239 . . . . 5  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( ( 0 
.x.  X )  .X.  Y )  =  ( 0  .x.  ( X 
.X.  Y ) ) )
40 srgmnd 13599 . . . . . . . . . . . . . 14  |-  ( R  e. SRing  ->  R  e.  Mnd )
4140adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  R  e.  Mnd )
4241adantl 277 . . . . . . . . . . . 12  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  R  e.  Mnd )
43 simpl 109 . . . . . . . . . . . 12  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  y  e.  NN0 )
4430adantl 277 . . . . . . . . . . . 12  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  X  e.  B )
45 eqid 2196 . . . . . . . . . . . . 13  |-  ( +g  `  R )  =  ( +g  `  R )
4624, 31, 45mulgnn0p1 13339 . . . . . . . . . . . 12  |-  ( ( R  e.  Mnd  /\  y  e.  NN0  /\  X  e.  B )  ->  (
( y  +  1 )  .x.  X )  =  ( ( y 
.x.  X ) ( +g  `  R ) X ) )
4742, 43, 44, 46syl3anc 1249 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  (
( y  +  1 )  .x.  X )  =  ( ( y 
.x.  X ) ( +g  `  R ) X ) )
4847oveq1d 5940 . . . . . . . . . 10  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  (
( ( y  +  1 )  .x.  X
)  .X.  Y )  =  ( ( ( y  .x.  X ) ( +g  `  R
) X )  .X.  Y ) )
4921adantl 277 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  R  e. SRing )
5024, 31mulgnn0cl 13344 . . . . . . . . . . . 12  |-  ( ( R  e.  Mnd  /\  y  e.  NN0  /\  X  e.  B )  ->  (
y  .x.  X )  e.  B )
5142, 43, 44, 50syl3anc 1249 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  (
y  .x.  X )  e.  B )
5223adantl 277 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  Y  e.  B )
5324, 45, 25srgdir 13607 . . . . . . . . . . 11  |-  ( ( R  e. SRing  /\  (
( y  .x.  X
)  e.  B  /\  X  e.  B  /\  Y  e.  B )
)  ->  ( (
( y  .x.  X
) ( +g  `  R
) X )  .X.  Y )  =  ( ( ( y  .x.  X )  .X.  Y
) ( +g  `  R
) ( X  .X.  Y ) ) )
5449, 51, 44, 52, 53syl13anc 1251 . . . . . . . . . 10  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  (
( ( y  .x.  X ) ( +g  `  R ) X ) 
.X.  Y )  =  ( ( ( y 
.x.  X )  .X.  Y ) ( +g  `  R ) ( X 
.X.  Y ) ) )
5548, 54eqtrd 2229 . . . . . . . . 9  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  (
( ( y  +  1 )  .x.  X
)  .X.  Y )  =  ( ( ( y  .x.  X ) 
.X.  Y ) ( +g  `  R ) ( X  .X.  Y
) ) )
5655adantr 276 . . . . . . . 8  |-  ( ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  /\  (
( y  .x.  X
)  .X.  Y )  =  ( y  .x.  ( X  .X.  Y ) ) )  ->  (
( ( y  +  1 )  .x.  X
)  .X.  Y )  =  ( ( ( y  .x.  X ) 
.X.  Y ) ( +g  `  R ) ( X  .X.  Y
) ) )
57 oveq1 5932 . . . . . . . . 9  |-  ( ( ( y  .x.  X
)  .X.  Y )  =  ( y  .x.  ( X  .X.  Y ) )  ->  ( (
( y  .x.  X
)  .X.  Y )
( +g  `  R ) ( X  .X.  Y
) )  =  ( ( y  .x.  ( X  .X.  Y ) ) ( +g  `  R
) ( X  .X.  Y ) ) )
58353expb 1206 . . . . . . . . . . . . 13  |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  Y  e.  B )
)  ->  ( X  .X.  Y )  e.  B
)
5958ancoms 268 . . . . . . . . . . . 12  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( X  .X.  Y )  e.  B
)
6059adantl 277 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  ( X  .X.  Y )  e.  B )
6124, 31, 45mulgnn0p1 13339 . . . . . . . . . . 11  |-  ( ( R  e.  Mnd  /\  y  e.  NN0  /\  ( X  .X.  Y )  e.  B )  ->  (
( y  +  1 )  .x.  ( X 
.X.  Y ) )  =  ( ( y 
.x.  ( X  .X.  Y ) ) ( +g  `  R ) ( X  .X.  Y
) ) )
6242, 43, 60, 61syl3anc 1249 . . . . . . . . . 10  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  (
( y  +  1 )  .x.  ( X 
.X.  Y ) )  =  ( ( y 
.x.  ( X  .X.  Y ) ) ( +g  `  R ) ( X  .X.  Y
) ) )
6362eqcomd 2202 . . . . . . . . 9  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  (
( y  .x.  ( X  .X.  Y ) ) ( +g  `  R
) ( X  .X.  Y ) )  =  ( ( y  +  1 )  .x.  ( X  .X.  Y ) ) )
6457, 63sylan9eqr 2251 . . . . . . . 8  |-  ( ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  /\  (
( y  .x.  X
)  .X.  Y )  =  ( y  .x.  ( X  .X.  Y ) ) )  ->  (
( ( y  .x.  X )  .X.  Y
) ( +g  `  R
) ( X  .X.  Y ) )  =  ( ( y  +  1 )  .x.  ( X  .X.  Y ) ) )
6556, 64eqtrd 2229 . . . . . . 7  |-  ( ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  /\  (
( y  .x.  X
)  .X.  Y )  =  ( y  .x.  ( X  .X.  Y ) ) )  ->  (
( ( y  +  1 )  .x.  X
)  .X.  Y )  =  ( ( y  +  1 )  .x.  ( X  .X.  Y ) ) )
6665exp31 364 . . . . . 6  |-  ( y  e.  NN0  ->  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( ( ( y  .x.  X ) 
.X.  Y )  =  ( y  .x.  ( X  .X.  Y ) )  ->  ( ( ( y  +  1 ) 
.x.  X )  .X.  Y )  =  ( ( y  +  1 )  .x.  ( X 
.X.  Y ) ) ) ) )
6766a2d 26 . . . . 5  |-  ( y  e.  NN0  ->  ( ( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  ->  ( (
y  .x.  X )  .X.  Y )  =  ( y  .x.  ( X 
.X.  Y ) ) )  ->  ( (
( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( ( ( y  +  1 ) 
.x.  X )  .X.  Y )  =  ( ( y  +  1 )  .x.  ( X 
.X.  Y ) ) ) ) )
685, 10, 15, 20, 39, 67nn0ind 9457 . . . 4  |-  ( N  e.  NN0  ->  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( ( N 
.x.  X )  .X.  Y )  =  ( N  .x.  ( X 
.X.  Y ) ) ) )
6968expd 258 . . 3  |-  ( N  e.  NN0  ->  ( ( X  e.  B  /\  Y  e.  B )  ->  ( R  e. SRing  ->  ( ( N  .x.  X
)  .X.  Y )  =  ( N  .x.  ( X  .X.  Y ) ) ) ) )
70693impib 1203 . 2  |-  ( ( N  e.  NN0  /\  X  e.  B  /\  Y  e.  B )  ->  ( R  e. SRing  ->  ( ( N  .x.  X
)  .X.  Y )  =  ( N  .x.  ( X  .X.  Y ) ) ) )
7170impcom 125 1  |-  ( ( R  e. SRing  /\  ( N  e.  NN0  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( N  .x.  X )  .X.  Y
)  =  ( N 
.x.  ( X  .X.  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   ` cfv 5259  (class class class)co 5925   0cc0 7896   1c1 7897    + caddc 7899   NN0cn0 9266   Basecbs 12703   +g cplusg 12780   .rcmulr 12781   0gc0g 12958   Mndcmnd 13118  .gcmg 13325  SRingcsrg 13595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-3 9067  df-n0 9267  df-z 9344  df-uz 9619  df-seqfrec 10557  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-minusg 13206  df-mulg 13326  df-cmn 13492  df-mgp 13553  df-srg 13596
This theorem is referenced by:  srgpcomppsc  13624
  Copyright terms: Public domain W3C validator