ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgmulgass Unicode version

Theorem srgmulgass 13866
Description: An associative property between group multiple and ring multiplication for semirings. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgmulgass.b  |-  B  =  ( Base `  R
)
srgmulgass.m  |-  .x.  =  (.g
`  R )
srgmulgass.t  |-  .X.  =  ( .r `  R )
Assertion
Ref Expression
srgmulgass  |-  ( ( R  e. SRing  /\  ( N  e.  NN0  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( N  .x.  X )  .X.  Y
)  =  ( N 
.x.  ( X  .X.  Y ) ) )

Proof of Theorem srgmulgass
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5974 . . . . . . . 8  |-  ( x  =  0  ->  (
x  .x.  X )  =  ( 0  .x. 
X ) )
21oveq1d 5982 . . . . . . 7  |-  ( x  =  0  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( 0 
.x.  X )  .X.  Y ) )
3 oveq1 5974 . . . . . . 7  |-  ( x  =  0  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( 0  .x.  ( X  .X.  Y ) ) )
42, 3eqeq12d 2222 . . . . . 6  |-  ( x  =  0  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( (
0  .x.  X )  .X.  Y )  =  ( 0  .x.  ( X 
.X.  Y ) ) ) )
54imbi2d 230 . . . . 5  |-  ( x  =  0  ->  (
( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  ->  ( (
x  .x.  X )  .X.  Y )  =  ( x  .x.  ( X 
.X.  Y ) ) )  <->  ( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  -> 
( ( 0  .x. 
X )  .X.  Y
)  =  ( 0 
.x.  ( X  .X.  Y ) ) ) ) )
6 oveq1 5974 . . . . . . . 8  |-  ( x  =  y  ->  (
x  .x.  X )  =  ( y  .x.  X ) )
76oveq1d 5982 . . . . . . 7  |-  ( x  =  y  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( y 
.x.  X )  .X.  Y ) )
8 oveq1 5974 . . . . . . 7  |-  ( x  =  y  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( y  .x.  ( X  .X.  Y ) ) )
97, 8eqeq12d 2222 . . . . . 6  |-  ( x  =  y  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( (
y  .x.  X )  .X.  Y )  =  ( y  .x.  ( X 
.X.  Y ) ) ) )
109imbi2d 230 . . . . 5  |-  ( x  =  y  ->  (
( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  ->  ( (
x  .x.  X )  .X.  Y )  =  ( x  .x.  ( X 
.X.  Y ) ) )  <->  ( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  -> 
( ( y  .x.  X )  .X.  Y
)  =  ( y 
.x.  ( X  .X.  Y ) ) ) ) )
11 oveq1 5974 . . . . . . . 8  |-  ( x  =  ( y  +  1 )  ->  (
x  .x.  X )  =  ( ( y  +  1 )  .x.  X ) )
1211oveq1d 5982 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( ( y  +  1 ) 
.x.  X )  .X.  Y ) )
13 oveq1 5974 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( ( y  +  1 )  .x.  ( X  .X.  Y ) ) )
1412, 13eqeq12d 2222 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( (
( y  +  1 )  .x.  X ) 
.X.  Y )  =  ( ( y  +  1 )  .x.  ( X  .X.  Y ) ) ) )
1514imbi2d 230 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  ->  ( (
x  .x.  X )  .X.  Y )  =  ( x  .x.  ( X 
.X.  Y ) ) )  <->  ( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  -> 
( ( ( y  +  1 )  .x.  X )  .X.  Y
)  =  ( ( y  +  1 ) 
.x.  ( X  .X.  Y ) ) ) ) )
16 oveq1 5974 . . . . . . . 8  |-  ( x  =  N  ->  (
x  .x.  X )  =  ( N  .x.  X ) )
1716oveq1d 5982 . . . . . . 7  |-  ( x  =  N  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( N 
.x.  X )  .X.  Y ) )
18 oveq1 5974 . . . . . . 7  |-  ( x  =  N  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( N  .x.  ( X  .X.  Y ) ) )
1917, 18eqeq12d 2222 . . . . . 6  |-  ( x  =  N  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( ( N  .x.  X )  .X.  Y )  =  ( N  .x.  ( X 
.X.  Y ) ) ) )
2019imbi2d 230 . . . . 5  |-  ( x  =  N  ->  (
( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  ->  ( (
x  .x.  X )  .X.  Y )  =  ( x  .x.  ( X 
.X.  Y ) ) )  <->  ( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  -> 
( ( N  .x.  X )  .X.  Y
)  =  ( N 
.x.  ( X  .X.  Y ) ) ) ) )
21 simpr 110 . . . . . . 7  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  R  e. SRing )
22 simpr 110 . . . . . . . 8  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
2322adantr 276 . . . . . . 7  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  Y  e.  B
)
24 srgmulgass.b . . . . . . . 8  |-  B  =  ( Base `  R
)
25 srgmulgass.t . . . . . . . 8  |-  .X.  =  ( .r `  R )
26 eqid 2207 . . . . . . . 8  |-  ( 0g
`  R )  =  ( 0g `  R
)
2724, 25, 26srglz 13862 . . . . . . 7  |-  ( ( R  e. SRing  /\  Y  e.  B )  ->  (
( 0g `  R
)  .X.  Y )  =  ( 0g `  R ) )
2821, 23, 27syl2anc 411 . . . . . 6  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( ( 0g
`  R )  .X.  Y )  =  ( 0g `  R ) )
29 simpl 109 . . . . . . . . 9  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
3029adantr 276 . . . . . . . 8  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  X  e.  B
)
31 srgmulgass.m . . . . . . . . 9  |-  .x.  =  (.g
`  R )
3224, 26, 31mulg0 13576 . . . . . . . 8  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  R ) )
3330, 32syl 14 . . . . . . 7  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( 0  .x. 
X )  =  ( 0g `  R ) )
3433oveq1d 5982 . . . . . 6  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( ( 0 
.x.  X )  .X.  Y )  =  ( ( 0g `  R
)  .X.  Y )
)
3524, 25srgcl 13847 . . . . . . . 8  |-  ( ( R  e. SRing  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .X.  Y )  e.  B )
3621, 30, 23, 35syl3anc 1250 . . . . . . 7  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( X  .X.  Y )  e.  B
)
3724, 26, 31mulg0 13576 . . . . . . 7  |-  ( ( X  .X.  Y )  e.  B  ->  ( 0 
.x.  ( X  .X.  Y ) )  =  ( 0g `  R
) )
3836, 37syl 14 . . . . . 6  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( 0  .x.  ( X  .X.  Y
) )  =  ( 0g `  R ) )
3928, 34, 383eqtr4d 2250 . . . . 5  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( ( 0 
.x.  X )  .X.  Y )  =  ( 0  .x.  ( X 
.X.  Y ) ) )
40 srgmnd 13844 . . . . . . . . . . . . . 14  |-  ( R  e. SRing  ->  R  e.  Mnd )
4140adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  R  e.  Mnd )
4241adantl 277 . . . . . . . . . . . 12  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  R  e.  Mnd )
43 simpl 109 . . . . . . . . . . . 12  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  y  e.  NN0 )
4430adantl 277 . . . . . . . . . . . 12  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  X  e.  B )
45 eqid 2207 . . . . . . . . . . . . 13  |-  ( +g  `  R )  =  ( +g  `  R )
4624, 31, 45mulgnn0p1 13584 . . . . . . . . . . . 12  |-  ( ( R  e.  Mnd  /\  y  e.  NN0  /\  X  e.  B )  ->  (
( y  +  1 )  .x.  X )  =  ( ( y 
.x.  X ) ( +g  `  R ) X ) )
4742, 43, 44, 46syl3anc 1250 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  (
( y  +  1 )  .x.  X )  =  ( ( y 
.x.  X ) ( +g  `  R ) X ) )
4847oveq1d 5982 . . . . . . . . . 10  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  (
( ( y  +  1 )  .x.  X
)  .X.  Y )  =  ( ( ( y  .x.  X ) ( +g  `  R
) X )  .X.  Y ) )
4921adantl 277 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  R  e. SRing )
5024, 31mulgnn0cl 13589 . . . . . . . . . . . 12  |-  ( ( R  e.  Mnd  /\  y  e.  NN0  /\  X  e.  B )  ->  (
y  .x.  X )  e.  B )
5142, 43, 44, 50syl3anc 1250 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  (
y  .x.  X )  e.  B )
5223adantl 277 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  Y  e.  B )
5324, 45, 25srgdir 13852 . . . . . . . . . . 11  |-  ( ( R  e. SRing  /\  (
( y  .x.  X
)  e.  B  /\  X  e.  B  /\  Y  e.  B )
)  ->  ( (
( y  .x.  X
) ( +g  `  R
) X )  .X.  Y )  =  ( ( ( y  .x.  X )  .X.  Y
) ( +g  `  R
) ( X  .X.  Y ) ) )
5449, 51, 44, 52, 53syl13anc 1252 . . . . . . . . . 10  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  (
( ( y  .x.  X ) ( +g  `  R ) X ) 
.X.  Y )  =  ( ( ( y 
.x.  X )  .X.  Y ) ( +g  `  R ) ( X 
.X.  Y ) ) )
5548, 54eqtrd 2240 . . . . . . . . 9  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  (
( ( y  +  1 )  .x.  X
)  .X.  Y )  =  ( ( ( y  .x.  X ) 
.X.  Y ) ( +g  `  R ) ( X  .X.  Y
) ) )
5655adantr 276 . . . . . . . 8  |-  ( ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  /\  (
( y  .x.  X
)  .X.  Y )  =  ( y  .x.  ( X  .X.  Y ) ) )  ->  (
( ( y  +  1 )  .x.  X
)  .X.  Y )  =  ( ( ( y  .x.  X ) 
.X.  Y ) ( +g  `  R ) ( X  .X.  Y
) ) )
57 oveq1 5974 . . . . . . . . 9  |-  ( ( ( y  .x.  X
)  .X.  Y )  =  ( y  .x.  ( X  .X.  Y ) )  ->  ( (
( y  .x.  X
)  .X.  Y )
( +g  `  R ) ( X  .X.  Y
) )  =  ( ( y  .x.  ( X  .X.  Y ) ) ( +g  `  R
) ( X  .X.  Y ) ) )
58353expb 1207 . . . . . . . . . . . . 13  |-  ( ( R  e. SRing  /\  ( X  e.  B  /\  Y  e.  B )
)  ->  ( X  .X.  Y )  e.  B
)
5958ancoms 268 . . . . . . . . . . . 12  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( X  .X.  Y )  e.  B
)
6059adantl 277 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  ( X  .X.  Y )  e.  B )
6124, 31, 45mulgnn0p1 13584 . . . . . . . . . . 11  |-  ( ( R  e.  Mnd  /\  y  e.  NN0  /\  ( X  .X.  Y )  e.  B )  ->  (
( y  +  1 )  .x.  ( X 
.X.  Y ) )  =  ( ( y 
.x.  ( X  .X.  Y ) ) ( +g  `  R ) ( X  .X.  Y
) ) )
6242, 43, 60, 61syl3anc 1250 . . . . . . . . . 10  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  (
( y  +  1 )  .x.  ( X 
.X.  Y ) )  =  ( ( y 
.x.  ( X  .X.  Y ) ) ( +g  `  R ) ( X  .X.  Y
) ) )
6362eqcomd 2213 . . . . . . . . 9  |-  ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  ->  (
( y  .x.  ( X  .X.  Y ) ) ( +g  `  R
) ( X  .X.  Y ) )  =  ( ( y  +  1 )  .x.  ( X  .X.  Y ) ) )
6457, 63sylan9eqr 2262 . . . . . . . 8  |-  ( ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  /\  (
( y  .x.  X
)  .X.  Y )  =  ( y  .x.  ( X  .X.  Y ) ) )  ->  (
( ( y  .x.  X )  .X.  Y
) ( +g  `  R
) ( X  .X.  Y ) )  =  ( ( y  +  1 )  .x.  ( X  .X.  Y ) ) )
6556, 64eqtrd 2240 . . . . . . 7  |-  ( ( ( y  e.  NN0  /\  ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing ) )  /\  (
( y  .x.  X
)  .X.  Y )  =  ( y  .x.  ( X  .X.  Y ) ) )  ->  (
( ( y  +  1 )  .x.  X
)  .X.  Y )  =  ( ( y  +  1 )  .x.  ( X  .X.  Y ) ) )
6665exp31 364 . . . . . 6  |-  ( y  e.  NN0  ->  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( ( ( y  .x.  X ) 
.X.  Y )  =  ( y  .x.  ( X  .X.  Y ) )  ->  ( ( ( y  +  1 ) 
.x.  X )  .X.  Y )  =  ( ( y  +  1 )  .x.  ( X 
.X.  Y ) ) ) ) )
6766a2d 26 . . . . 5  |-  ( y  e.  NN0  ->  ( ( ( ( X  e.  B  /\  Y  e.  B )  /\  R  e. SRing )  ->  ( (
y  .x.  X )  .X.  Y )  =  ( y  .x.  ( X 
.X.  Y ) ) )  ->  ( (
( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( ( ( y  +  1 ) 
.x.  X )  .X.  Y )  =  ( ( y  +  1 )  .x.  ( X 
.X.  Y ) ) ) ) )
685, 10, 15, 20, 39, 67nn0ind 9522 . . . 4  |-  ( N  e.  NN0  ->  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  R  e. SRing )  ->  ( ( N 
.x.  X )  .X.  Y )  =  ( N  .x.  ( X 
.X.  Y ) ) ) )
6968expd 258 . . 3  |-  ( N  e.  NN0  ->  ( ( X  e.  B  /\  Y  e.  B )  ->  ( R  e. SRing  ->  ( ( N  .x.  X
)  .X.  Y )  =  ( N  .x.  ( X  .X.  Y ) ) ) ) )
70693impib 1204 . 2  |-  ( ( N  e.  NN0  /\  X  e.  B  /\  Y  e.  B )  ->  ( R  e. SRing  ->  ( ( N  .x.  X
)  .X.  Y )  =  ( N  .x.  ( X  .X.  Y ) ) ) )
7170impcom 125 1  |-  ( ( R  e. SRing  /\  ( N  e.  NN0  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( N  .x.  X )  .X.  Y
)  =  ( N 
.x.  ( X  .X.  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   0cc0 7960   1c1 7961    + caddc 7963   NN0cn0 9330   Basecbs 12947   +g cplusg 13024   .rcmulr 13025   0gc0g 13203   Mndcmnd 13363  .gcmg 13570  SRingcsrg 13840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-2 9130  df-3 9131  df-n0 9331  df-z 9408  df-uz 9684  df-seqfrec 10630  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-minusg 13451  df-mulg 13571  df-cmn 13737  df-mgp 13798  df-srg 13841
This theorem is referenced by:  srgpcomppsc  13869
  Copyright terms: Public domain W3C validator