ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthdec Unicode version

Theorem ivthdec 15201
Description: The intermediate value theorem, decreasing case, for a strictly monotonic function. (Contributed by Jim Kingdon, 20-Feb-2024.)
Hypotheses
Ref Expression
ivth.1  |-  ( ph  ->  A  e.  RR )
ivth.2  |-  ( ph  ->  B  e.  RR )
ivth.3  |-  ( ph  ->  U  e.  RR )
ivth.4  |-  ( ph  ->  A  <  B )
ivth.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivth.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivth.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
ivthdec.9  |-  ( ph  ->  ( ( F `  B )  <  U  /\  U  <  ( F `
 A ) ) )
ivthdec.i  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  y )  <  ( F `  x )
)
Assertion
Ref Expression
ivthdec  |-  ( ph  ->  E. c  e.  ( A (,) B ) ( F `  c
)  =  U )
Distinct variable groups:    A, c, x   
y, A, x    B, c, x    y, B    D, c, x    y, D    F, c, x    y, F    U, c, x    y, U    ph, c, x    ph, y

Proof of Theorem ivthdec
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ivth.1 . . 3  |-  ( ph  ->  A  e.  RR )
2 ivth.2 . . 3  |-  ( ph  ->  B  e.  RR )
3 ivth.3 . . . 4  |-  ( ph  ->  U  e.  RR )
43renegcld 8482 . . 3  |-  ( ph  -> 
-u U  e.  RR )
5 ivth.4 . . 3  |-  ( ph  ->  A  <  B )
6 ivth.5 . . 3  |-  ( ph  ->  ( A [,] B
)  C_  D )
7 ivth.7 . . . 4  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
8 eqid 2206 . . . . 5  |-  ( w  e.  D  |->  -u ( F `  w )
)  =  ( w  e.  D  |->  -u ( F `  w )
)
98negfcncf 15163 . . . 4  |-  ( F  e.  ( D -cn-> CC )  ->  ( w  e.  D  |->  -u ( F `  w )
)  e.  ( D
-cn-> CC ) )
107, 9syl 14 . . 3  |-  ( ph  ->  ( w  e.  D  |-> 
-u ( F `  w ) )  e.  ( D -cn-> CC ) )
11 fveq2 5594 . . . . . 6  |-  ( w  =  x  ->  ( F `  w )  =  ( F `  x ) )
1211negeqd 8297 . . . . 5  |-  ( w  =  x  ->  -u ( F `  w )  =  -u ( F `  x ) )
136sselda 3197 . . . . 5  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  e.  D )
14 ivth.8 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
1514renegcld 8482 . . . . 5  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  -u ( F `
 x )  e.  RR )
168, 12, 13, 15fvmptd3 5691 . . . 4  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( (
w  e.  D  |->  -u ( F `  w ) ) `  x )  =  -u ( F `  x ) )
1716, 15eqeltrd 2283 . . 3  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( (
w  e.  D  |->  -u ( F `  w ) ) `  x )  e.  RR )
18 fveq2 5594 . . . . . . 7  |-  ( w  =  A  ->  ( F `  w )  =  ( F `  A ) )
1918negeqd 8297 . . . . . 6  |-  ( w  =  A  ->  -u ( F `  w )  =  -u ( F `  A ) )
201rexrd 8152 . . . . . . . 8  |-  ( ph  ->  A  e.  RR* )
212rexrd 8152 . . . . . . . 8  |-  ( ph  ->  B  e.  RR* )
221, 2, 5ltled 8221 . . . . . . . 8  |-  ( ph  ->  A  <_  B )
23 lbicc2 10136 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
2420, 21, 22, 23syl3anc 1250 . . . . . . 7  |-  ( ph  ->  A  e.  ( A [,] B ) )
256, 24sseldd 3198 . . . . . 6  |-  ( ph  ->  A  e.  D )
26 fveq2 5594 . . . . . . . . 9  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
2726eleq1d 2275 . . . . . . . 8  |-  ( x  =  A  ->  (
( F `  x
)  e.  RR  <->  ( F `  A )  e.  RR ) )
2814ralrimiva 2580 . . . . . . . 8  |-  ( ph  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
2927, 28, 24rspcdva 2886 . . . . . . 7  |-  ( ph  ->  ( F `  A
)  e.  RR )
3029renegcld 8482 . . . . . 6  |-  ( ph  -> 
-u ( F `  A )  e.  RR )
318, 19, 25, 30fvmptd3 5691 . . . . 5  |-  ( ph  ->  ( ( w  e.  D  |->  -u ( F `  w ) ) `  A )  =  -u ( F `  A ) )
32 ivthdec.9 . . . . . . 7  |-  ( ph  ->  ( ( F `  B )  <  U  /\  U  <  ( F `
 A ) ) )
3332simprd 114 . . . . . 6  |-  ( ph  ->  U  <  ( F `
 A ) )
343, 29ltnegd 8626 . . . . . 6  |-  ( ph  ->  ( U  <  ( F `  A )  <->  -u ( F `  A
)  <  -u U ) )
3533, 34mpbid 147 . . . . 5  |-  ( ph  -> 
-u ( F `  A )  <  -u U
)
3631, 35eqbrtrd 4076 . . . 4  |-  ( ph  ->  ( ( w  e.  D  |->  -u ( F `  w ) ) `  A )  <  -u U
)
3732simpld 112 . . . . . 6  |-  ( ph  ->  ( F `  B
)  <  U )
38 fveq2 5594 . . . . . . . . 9  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
3938eleq1d 2275 . . . . . . . 8  |-  ( x  =  B  ->  (
( F `  x
)  e.  RR  <->  ( F `  B )  e.  RR ) )
40 ubicc2 10137 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
4120, 21, 22, 40syl3anc 1250 . . . . . . . 8  |-  ( ph  ->  B  e.  ( A [,] B ) )
4239, 28, 41rspcdva 2886 . . . . . . 7  |-  ( ph  ->  ( F `  B
)  e.  RR )
4342, 3ltnegd 8626 . . . . . 6  |-  ( ph  ->  ( ( F `  B )  <  U  <->  -u U  <  -u ( F `  B )
) )
4437, 43mpbid 147 . . . . 5  |-  ( ph  -> 
-u U  <  -u ( F `  B )
)
45 fveq2 5594 . . . . . . 7  |-  ( w  =  B  ->  ( F `  w )  =  ( F `  B ) )
4645negeqd 8297 . . . . . 6  |-  ( w  =  B  ->  -u ( F `  w )  =  -u ( F `  B ) )
476, 41sseldd 3198 . . . . . 6  |-  ( ph  ->  B  e.  D )
4842renegcld 8482 . . . . . 6  |-  ( ph  -> 
-u ( F `  B )  e.  RR )
498, 46, 47, 48fvmptd3 5691 . . . . 5  |-  ( ph  ->  ( ( w  e.  D  |->  -u ( F `  w ) ) `  B )  =  -u ( F `  B ) )
5044, 49breqtrrd 4082 . . . 4  |-  ( ph  -> 
-u U  <  (
( w  e.  D  |-> 
-u ( F `  w ) ) `  B ) )
5136, 50jca 306 . . 3  |-  ( ph  ->  ( ( ( w  e.  D  |->  -u ( F `  w )
) `  A )  <  -u U  /\  -u U  <  ( ( w  e.  D  |->  -u ( F `  w ) ) `  B ) ) )
52 ivthdec.i . . . . 5  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  y )  <  ( F `  x )
)
53 fveq2 5594 . . . . . . . 8  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
5453eleq1d 2275 . . . . . . 7  |-  ( x  =  y  ->  (
( F `  x
)  e.  RR  <->  ( F `  y )  e.  RR ) )
55 simpll 527 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ph )
5655, 28syl 14 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
57 simprl 529 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  y  e.  ( A [,] B ) )
5854, 56, 57rspcdva 2886 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  y )  e.  RR )
5914adantr 276 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  e.  RR )
6058, 59ltnegd 8626 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( ( F `
 y )  < 
( F `  x
)  <->  -u ( F `  x )  <  -u ( F `  y )
) )
6152, 60mpbid 147 . . . 4  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  -u ( F `  x )  <  -u ( F `  y )
)
6213adantr 276 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  x  e.  D
)
6315adantr 276 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  -u ( F `  x )  e.  RR )
648, 12, 62, 63fvmptd3 5691 . . . 4  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( ( w  e.  D  |->  -u ( F `  w )
) `  x )  =  -u ( F `  x ) )
65 fveq2 5594 . . . . . 6  |-  ( w  =  y  ->  ( F `  w )  =  ( F `  y ) )
6665negeqd 8297 . . . . 5  |-  ( w  =  y  ->  -u ( F `  w )  =  -u ( F `  y ) )
676sseld 3196 . . . . . 6  |-  ( ph  ->  ( y  e.  ( A [,] B )  ->  y  e.  D
) )
6855, 57, 67sylc 62 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  y  e.  D
)
6958renegcld 8482 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  -u ( F `  y )  e.  RR )
708, 66, 68, 69fvmptd3 5691 . . . 4  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( ( w  e.  D  |->  -u ( F `  w )
) `  y )  =  -u ( F `  y ) )
7161, 64, 703brtr4d 4086 . . 3  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( ( w  e.  D  |->  -u ( F `  w )
) `  x )  <  ( ( w  e.  D  |->  -u ( F `  w ) ) `  y ) )
721, 2, 4, 5, 6, 10, 17, 51, 71ivthinc 15200 . 2  |-  ( ph  ->  E. c  e.  ( A (,) B ) ( ( w  e.  D  |->  -u ( F `  w ) ) `  c )  =  -u U )
73 fveq2 5594 . . . . . . 7  |-  ( w  =  c  ->  ( F `  w )  =  ( F `  c ) )
7473negeqd 8297 . . . . . 6  |-  ( w  =  c  ->  -u ( F `  w )  =  -u ( F `  c ) )
75 ioossicc 10111 . . . . . . . 8  |-  ( A (,) B )  C_  ( A [,] B )
7675, 6sstrid 3208 . . . . . . 7  |-  ( ph  ->  ( A (,) B
)  C_  D )
7776sselda 3197 . . . . . 6  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  c  e.  D )
78 fveq2 5594 . . . . . . . . 9  |-  ( x  =  c  ->  ( F `  x )  =  ( F `  c ) )
7978eleq1d 2275 . . . . . . . 8  |-  ( x  =  c  ->  (
( F `  x
)  e.  RR  <->  ( F `  c )  e.  RR ) )
8028adantr 276 . . . . . . . 8  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  A. x  e.  ( A [,] B
) ( F `  x )  e.  RR )
8175sseli 3193 . . . . . . . . 9  |-  ( c  e.  ( A (,) B )  ->  c  e.  ( A [,] B
) )
8281adantl 277 . . . . . . . 8  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  c  e.  ( A [,] B ) )
8379, 80, 82rspcdva 2886 . . . . . . 7  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( F `  c )  e.  RR )
8483renegcld 8482 . . . . . 6  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  -u ( F `
 c )  e.  RR )
858, 74, 77, 84fvmptd3 5691 . . . . 5  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( (
w  e.  D  |->  -u ( F `  w ) ) `  c )  =  -u ( F `  c ) )
8685eqeq1d 2215 . . . 4  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( (
( w  e.  D  |-> 
-u ( F `  w ) ) `  c )  =  -u U 
<-> 
-u ( F `  c )  =  -u U ) )
87 cncff 15134 . . . . . . . 8  |-  ( F  e.  ( D -cn-> CC )  ->  F : D
--> CC )
887, 87syl 14 . . . . . . 7  |-  ( ph  ->  F : D --> CC )
8988ffvelcdmda 5733 . . . . . 6  |-  ( (
ph  /\  c  e.  D )  ->  ( F `  c )  e.  CC )
9077, 89syldan 282 . . . . 5  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( F `  c )  e.  CC )
913recnd 8131 . . . . . 6  |-  ( ph  ->  U  e.  CC )
9291adantr 276 . . . . 5  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  U  e.  CC )
9390, 92neg11ad 8409 . . . 4  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( -u ( F `  c )  =  -u U  <->  ( F `  c )  =  U ) )
9486, 93bitrd 188 . . 3  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( (
( w  e.  D  |-> 
-u ( F `  w ) ) `  c )  =  -u U 
<->  ( F `  c
)  =  U ) )
9594rexbidva 2504 . 2  |-  ( ph  ->  ( E. c  e.  ( A (,) B
) ( ( w  e.  D  |->  -u ( F `  w )
) `  c )  =  -u U  <->  E. c  e.  ( A (,) B
) ( F `  c )  =  U ) )
9672, 95mpbid 147 1  |-  ( ph  ->  E. c  e.  ( A (,) B ) ( F `  c
)  =  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   A.wral 2485   E.wrex 2486    C_ wss 3170   class class class wbr 4054    |-> cmpt 4116   -->wf 5281   ` cfv 5285  (class class class)co 5962   CCcc 7953   RRcr 7954   RR*cxr 8136    < clt 8137    <_ cle 8138   -ucneg 8274   (,)cioo 10040   [,]cicc 10043   -cn->ccncf 15127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074  ax-caucvg 8075  ax-pre-suploc 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-isom 5294  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-map 6755  df-sup 7107  df-inf 7108  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-n0 9326  df-z 9403  df-uz 9679  df-rp 9806  df-ioo 10044  df-icc 10047  df-seqfrec 10625  df-exp 10716  df-cj 11238  df-re 11239  df-im 11240  df-rsqrt 11394  df-abs 11395  df-cncf 15128
This theorem is referenced by:  cosz12  15337  ioocosf1o  15411
  Copyright terms: Public domain W3C validator