| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ivthdec | Unicode version | ||
| Description: The intermediate value theorem, decreasing case, for a strictly monotonic function. (Contributed by Jim Kingdon, 20-Feb-2024.) |
| Ref | Expression |
|---|---|
| ivth.1 |
|
| ivth.2 |
|
| ivth.3 |
|
| ivth.4 |
|
| ivth.5 |
|
| ivth.7 |
|
| ivth.8 |
|
| ivthdec.9 |
|
| ivthdec.i |
|
| Ref | Expression |
|---|---|
| ivthdec |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivth.1 |
. . 3
| |
| 2 | ivth.2 |
. . 3
| |
| 3 | ivth.3 |
. . . 4
| |
| 4 | 3 | renegcld 8451 |
. . 3
|
| 5 | ivth.4 |
. . 3
| |
| 6 | ivth.5 |
. . 3
| |
| 7 | ivth.7 |
. . . 4
| |
| 8 | eqid 2204 |
. . . . 5
| |
| 9 | 8 | negfcncf 15020 |
. . . 4
|
| 10 | 7, 9 | syl 14 |
. . 3
|
| 11 | fveq2 5575 |
. . . . . 6
| |
| 12 | 11 | negeqd 8266 |
. . . . 5
|
| 13 | 6 | sselda 3192 |
. . . . 5
|
| 14 | ivth.8 |
. . . . . 6
| |
| 15 | 14 | renegcld 8451 |
. . . . 5
|
| 16 | 8, 12, 13, 15 | fvmptd3 5672 |
. . . 4
|
| 17 | 16, 15 | eqeltrd 2281 |
. . 3
|
| 18 | fveq2 5575 |
. . . . . . 7
| |
| 19 | 18 | negeqd 8266 |
. . . . . 6
|
| 20 | 1 | rexrd 8121 |
. . . . . . . 8
|
| 21 | 2 | rexrd 8121 |
. . . . . . . 8
|
| 22 | 1, 2, 5 | ltled 8190 |
. . . . . . . 8
|
| 23 | lbicc2 10105 |
. . . . . . . 8
| |
| 24 | 20, 21, 22, 23 | syl3anc 1249 |
. . . . . . 7
|
| 25 | 6, 24 | sseldd 3193 |
. . . . . 6
|
| 26 | fveq2 5575 |
. . . . . . . . 9
| |
| 27 | 26 | eleq1d 2273 |
. . . . . . . 8
|
| 28 | 14 | ralrimiva 2578 |
. . . . . . . 8
|
| 29 | 27, 28, 24 | rspcdva 2881 |
. . . . . . 7
|
| 30 | 29 | renegcld 8451 |
. . . . . 6
|
| 31 | 8, 19, 25, 30 | fvmptd3 5672 |
. . . . 5
|
| 32 | ivthdec.9 |
. . . . . . 7
| |
| 33 | 32 | simprd 114 |
. . . . . 6
|
| 34 | 3, 29 | ltnegd 8595 |
. . . . . 6
|
| 35 | 33, 34 | mpbid 147 |
. . . . 5
|
| 36 | 31, 35 | eqbrtrd 4065 |
. . . 4
|
| 37 | 32 | simpld 112 |
. . . . . 6
|
| 38 | fveq2 5575 |
. . . . . . . . 9
| |
| 39 | 38 | eleq1d 2273 |
. . . . . . . 8
|
| 40 | ubicc2 10106 |
. . . . . . . . 9
| |
| 41 | 20, 21, 22, 40 | syl3anc 1249 |
. . . . . . . 8
|
| 42 | 39, 28, 41 | rspcdva 2881 |
. . . . . . 7
|
| 43 | 42, 3 | ltnegd 8595 |
. . . . . 6
|
| 44 | 37, 43 | mpbid 147 |
. . . . 5
|
| 45 | fveq2 5575 |
. . . . . . 7
| |
| 46 | 45 | negeqd 8266 |
. . . . . 6
|
| 47 | 6, 41 | sseldd 3193 |
. . . . . 6
|
| 48 | 42 | renegcld 8451 |
. . . . . 6
|
| 49 | 8, 46, 47, 48 | fvmptd3 5672 |
. . . . 5
|
| 50 | 44, 49 | breqtrrd 4071 |
. . . 4
|
| 51 | 36, 50 | jca 306 |
. . 3
|
| 52 | ivthdec.i |
. . . . 5
| |
| 53 | fveq2 5575 |
. . . . . . . 8
| |
| 54 | 53 | eleq1d 2273 |
. . . . . . 7
|
| 55 | simpll 527 |
. . . . . . . 8
| |
| 56 | 55, 28 | syl 14 |
. . . . . . 7
|
| 57 | simprl 529 |
. . . . . . 7
| |
| 58 | 54, 56, 57 | rspcdva 2881 |
. . . . . 6
|
| 59 | 14 | adantr 276 |
. . . . . 6
|
| 60 | 58, 59 | ltnegd 8595 |
. . . . 5
|
| 61 | 52, 60 | mpbid 147 |
. . . 4
|
| 62 | 13 | adantr 276 |
. . . . 5
|
| 63 | 15 | adantr 276 |
. . . . 5
|
| 64 | 8, 12, 62, 63 | fvmptd3 5672 |
. . . 4
|
| 65 | fveq2 5575 |
. . . . . 6
| |
| 66 | 65 | negeqd 8266 |
. . . . 5
|
| 67 | 6 | sseld 3191 |
. . . . . 6
|
| 68 | 55, 57, 67 | sylc 62 |
. . . . 5
|
| 69 | 58 | renegcld 8451 |
. . . . 5
|
| 70 | 8, 66, 68, 69 | fvmptd3 5672 |
. . . 4
|
| 71 | 61, 64, 70 | 3brtr4d 4075 |
. . 3
|
| 72 | 1, 2, 4, 5, 6, 10, 17, 51, 71 | ivthinc 15057 |
. 2
|
| 73 | fveq2 5575 |
. . . . . . 7
| |
| 74 | 73 | negeqd 8266 |
. . . . . 6
|
| 75 | ioossicc 10080 |
. . . . . . . 8
| |
| 76 | 75, 6 | sstrid 3203 |
. . . . . . 7
|
| 77 | 76 | sselda 3192 |
. . . . . 6
|
| 78 | fveq2 5575 |
. . . . . . . . 9
| |
| 79 | 78 | eleq1d 2273 |
. . . . . . . 8
|
| 80 | 28 | adantr 276 |
. . . . . . . 8
|
| 81 | 75 | sseli 3188 |
. . . . . . . . 9
|
| 82 | 81 | adantl 277 |
. . . . . . . 8
|
| 83 | 79, 80, 82 | rspcdva 2881 |
. . . . . . 7
|
| 84 | 83 | renegcld 8451 |
. . . . . 6
|
| 85 | 8, 74, 77, 84 | fvmptd3 5672 |
. . . . 5
|
| 86 | 85 | eqeq1d 2213 |
. . . 4
|
| 87 | cncff 14991 |
. . . . . . . 8
| |
| 88 | 7, 87 | syl 14 |
. . . . . . 7
|
| 89 | 88 | ffvelcdmda 5714 |
. . . . . 6
|
| 90 | 77, 89 | syldan 282 |
. . . . 5
|
| 91 | 3 | recnd 8100 |
. . . . . 6
|
| 92 | 91 | adantr 276 |
. . . . 5
|
| 93 | 90, 92 | neg11ad 8378 |
. . . 4
|
| 94 | 86, 93 | bitrd 188 |
. . 3
|
| 95 | 94 | rexbidva 2502 |
. 2
|
| 96 | 72, 95 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 ax-pre-suploc 8045 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-map 6736 df-sup 7085 df-inf 7086 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-rp 9775 df-ioo 10013 df-icc 10016 df-seqfrec 10591 df-exp 10682 df-cj 11095 df-re 11096 df-im 11097 df-rsqrt 11251 df-abs 11252 df-cncf 14985 |
| This theorem is referenced by: cosz12 15194 ioocosf1o 15268 |
| Copyright terms: Public domain | W3C validator |