| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ivthdec | Unicode version | ||
| Description: The intermediate value theorem, decreasing case, for a strictly monotonic function. (Contributed by Jim Kingdon, 20-Feb-2024.) |
| Ref | Expression |
|---|---|
| ivth.1 |
|
| ivth.2 |
|
| ivth.3 |
|
| ivth.4 |
|
| ivth.5 |
|
| ivth.7 |
|
| ivth.8 |
|
| ivthdec.9 |
|
| ivthdec.i |
|
| Ref | Expression |
|---|---|
| ivthdec |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivth.1 |
. . 3
| |
| 2 | ivth.2 |
. . 3
| |
| 3 | ivth.3 |
. . . 4
| |
| 4 | 3 | renegcld 8522 |
. . 3
|
| 5 | ivth.4 |
. . 3
| |
| 6 | ivth.5 |
. . 3
| |
| 7 | ivth.7 |
. . . 4
| |
| 8 | eqid 2229 |
. . . . 5
| |
| 9 | 8 | negfcncf 15274 |
. . . 4
|
| 10 | 7, 9 | syl 14 |
. . 3
|
| 11 | fveq2 5626 |
. . . . . 6
| |
| 12 | 11 | negeqd 8337 |
. . . . 5
|
| 13 | 6 | sselda 3224 |
. . . . 5
|
| 14 | ivth.8 |
. . . . . 6
| |
| 15 | 14 | renegcld 8522 |
. . . . 5
|
| 16 | 8, 12, 13, 15 | fvmptd3 5727 |
. . . 4
|
| 17 | 16, 15 | eqeltrd 2306 |
. . 3
|
| 18 | fveq2 5626 |
. . . . . . 7
| |
| 19 | 18 | negeqd 8337 |
. . . . . 6
|
| 20 | 1 | rexrd 8192 |
. . . . . . . 8
|
| 21 | 2 | rexrd 8192 |
. . . . . . . 8
|
| 22 | 1, 2, 5 | ltled 8261 |
. . . . . . . 8
|
| 23 | lbicc2 10176 |
. . . . . . . 8
| |
| 24 | 20, 21, 22, 23 | syl3anc 1271 |
. . . . . . 7
|
| 25 | 6, 24 | sseldd 3225 |
. . . . . 6
|
| 26 | fveq2 5626 |
. . . . . . . . 9
| |
| 27 | 26 | eleq1d 2298 |
. . . . . . . 8
|
| 28 | 14 | ralrimiva 2603 |
. . . . . . . 8
|
| 29 | 27, 28, 24 | rspcdva 2912 |
. . . . . . 7
|
| 30 | 29 | renegcld 8522 |
. . . . . 6
|
| 31 | 8, 19, 25, 30 | fvmptd3 5727 |
. . . . 5
|
| 32 | ivthdec.9 |
. . . . . . 7
| |
| 33 | 32 | simprd 114 |
. . . . . 6
|
| 34 | 3, 29 | ltnegd 8666 |
. . . . . 6
|
| 35 | 33, 34 | mpbid 147 |
. . . . 5
|
| 36 | 31, 35 | eqbrtrd 4104 |
. . . 4
|
| 37 | 32 | simpld 112 |
. . . . . 6
|
| 38 | fveq2 5626 |
. . . . . . . . 9
| |
| 39 | 38 | eleq1d 2298 |
. . . . . . . 8
|
| 40 | ubicc2 10177 |
. . . . . . . . 9
| |
| 41 | 20, 21, 22, 40 | syl3anc 1271 |
. . . . . . . 8
|
| 42 | 39, 28, 41 | rspcdva 2912 |
. . . . . . 7
|
| 43 | 42, 3 | ltnegd 8666 |
. . . . . 6
|
| 44 | 37, 43 | mpbid 147 |
. . . . 5
|
| 45 | fveq2 5626 |
. . . . . . 7
| |
| 46 | 45 | negeqd 8337 |
. . . . . 6
|
| 47 | 6, 41 | sseldd 3225 |
. . . . . 6
|
| 48 | 42 | renegcld 8522 |
. . . . . 6
|
| 49 | 8, 46, 47, 48 | fvmptd3 5727 |
. . . . 5
|
| 50 | 44, 49 | breqtrrd 4110 |
. . . 4
|
| 51 | 36, 50 | jca 306 |
. . 3
|
| 52 | ivthdec.i |
. . . . 5
| |
| 53 | fveq2 5626 |
. . . . . . . 8
| |
| 54 | 53 | eleq1d 2298 |
. . . . . . 7
|
| 55 | simpll 527 |
. . . . . . . 8
| |
| 56 | 55, 28 | syl 14 |
. . . . . . 7
|
| 57 | simprl 529 |
. . . . . . 7
| |
| 58 | 54, 56, 57 | rspcdva 2912 |
. . . . . 6
|
| 59 | 14 | adantr 276 |
. . . . . 6
|
| 60 | 58, 59 | ltnegd 8666 |
. . . . 5
|
| 61 | 52, 60 | mpbid 147 |
. . . 4
|
| 62 | 13 | adantr 276 |
. . . . 5
|
| 63 | 15 | adantr 276 |
. . . . 5
|
| 64 | 8, 12, 62, 63 | fvmptd3 5727 |
. . . 4
|
| 65 | fveq2 5626 |
. . . . . 6
| |
| 66 | 65 | negeqd 8337 |
. . . . 5
|
| 67 | 6 | sseld 3223 |
. . . . . 6
|
| 68 | 55, 57, 67 | sylc 62 |
. . . . 5
|
| 69 | 58 | renegcld 8522 |
. . . . 5
|
| 70 | 8, 66, 68, 69 | fvmptd3 5727 |
. . . 4
|
| 71 | 61, 64, 70 | 3brtr4d 4114 |
. . 3
|
| 72 | 1, 2, 4, 5, 6, 10, 17, 51, 71 | ivthinc 15311 |
. 2
|
| 73 | fveq2 5626 |
. . . . . . 7
| |
| 74 | 73 | negeqd 8337 |
. . . . . 6
|
| 75 | ioossicc 10151 |
. . . . . . . 8
| |
| 76 | 75, 6 | sstrid 3235 |
. . . . . . 7
|
| 77 | 76 | sselda 3224 |
. . . . . 6
|
| 78 | fveq2 5626 |
. . . . . . . . 9
| |
| 79 | 78 | eleq1d 2298 |
. . . . . . . 8
|
| 80 | 28 | adantr 276 |
. . . . . . . 8
|
| 81 | 75 | sseli 3220 |
. . . . . . . . 9
|
| 82 | 81 | adantl 277 |
. . . . . . . 8
|
| 83 | 79, 80, 82 | rspcdva 2912 |
. . . . . . 7
|
| 84 | 83 | renegcld 8522 |
. . . . . 6
|
| 85 | 8, 74, 77, 84 | fvmptd3 5727 |
. . . . 5
|
| 86 | 85 | eqeq1d 2238 |
. . . 4
|
| 87 | cncff 15245 |
. . . . . . . 8
| |
| 88 | 7, 87 | syl 14 |
. . . . . . 7
|
| 89 | 88 | ffvelcdmda 5769 |
. . . . . 6
|
| 90 | 77, 89 | syldan 282 |
. . . . 5
|
| 91 | 3 | recnd 8171 |
. . . . . 6
|
| 92 | 91 | adantr 276 |
. . . . 5
|
| 93 | 90, 92 | neg11ad 8449 |
. . . 4
|
| 94 | 86, 93 | bitrd 188 |
. . 3
|
| 95 | 94 | rexbidva 2527 |
. 2
|
| 96 | 72, 95 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 ax-pre-suploc 8116 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-map 6795 df-sup 7147 df-inf 7148 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-rp 9846 df-ioo 10084 df-icc 10087 df-seqfrec 10665 df-exp 10756 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-cncf 15239 |
| This theorem is referenced by: cosz12 15448 ioocosf1o 15522 |
| Copyright terms: Public domain | W3C validator |