| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ivthdec | Unicode version | ||
| Description: The intermediate value theorem, decreasing case, for a strictly monotonic function. (Contributed by Jim Kingdon, 20-Feb-2024.) |
| Ref | Expression |
|---|---|
| ivth.1 |
|
| ivth.2 |
|
| ivth.3 |
|
| ivth.4 |
|
| ivth.5 |
|
| ivth.7 |
|
| ivth.8 |
|
| ivthdec.9 |
|
| ivthdec.i |
|
| Ref | Expression |
|---|---|
| ivthdec |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivth.1 |
. . 3
| |
| 2 | ivth.2 |
. . 3
| |
| 3 | ivth.3 |
. . . 4
| |
| 4 | 3 | renegcld 8482 |
. . 3
|
| 5 | ivth.4 |
. . 3
| |
| 6 | ivth.5 |
. . 3
| |
| 7 | ivth.7 |
. . . 4
| |
| 8 | eqid 2206 |
. . . . 5
| |
| 9 | 8 | negfcncf 15163 |
. . . 4
|
| 10 | 7, 9 | syl 14 |
. . 3
|
| 11 | fveq2 5594 |
. . . . . 6
| |
| 12 | 11 | negeqd 8297 |
. . . . 5
|
| 13 | 6 | sselda 3197 |
. . . . 5
|
| 14 | ivth.8 |
. . . . . 6
| |
| 15 | 14 | renegcld 8482 |
. . . . 5
|
| 16 | 8, 12, 13, 15 | fvmptd3 5691 |
. . . 4
|
| 17 | 16, 15 | eqeltrd 2283 |
. . 3
|
| 18 | fveq2 5594 |
. . . . . . 7
| |
| 19 | 18 | negeqd 8297 |
. . . . . 6
|
| 20 | 1 | rexrd 8152 |
. . . . . . . 8
|
| 21 | 2 | rexrd 8152 |
. . . . . . . 8
|
| 22 | 1, 2, 5 | ltled 8221 |
. . . . . . . 8
|
| 23 | lbicc2 10136 |
. . . . . . . 8
| |
| 24 | 20, 21, 22, 23 | syl3anc 1250 |
. . . . . . 7
|
| 25 | 6, 24 | sseldd 3198 |
. . . . . 6
|
| 26 | fveq2 5594 |
. . . . . . . . 9
| |
| 27 | 26 | eleq1d 2275 |
. . . . . . . 8
|
| 28 | 14 | ralrimiva 2580 |
. . . . . . . 8
|
| 29 | 27, 28, 24 | rspcdva 2886 |
. . . . . . 7
|
| 30 | 29 | renegcld 8482 |
. . . . . 6
|
| 31 | 8, 19, 25, 30 | fvmptd3 5691 |
. . . . 5
|
| 32 | ivthdec.9 |
. . . . . . 7
| |
| 33 | 32 | simprd 114 |
. . . . . 6
|
| 34 | 3, 29 | ltnegd 8626 |
. . . . . 6
|
| 35 | 33, 34 | mpbid 147 |
. . . . 5
|
| 36 | 31, 35 | eqbrtrd 4076 |
. . . 4
|
| 37 | 32 | simpld 112 |
. . . . . 6
|
| 38 | fveq2 5594 |
. . . . . . . . 9
| |
| 39 | 38 | eleq1d 2275 |
. . . . . . . 8
|
| 40 | ubicc2 10137 |
. . . . . . . . 9
| |
| 41 | 20, 21, 22, 40 | syl3anc 1250 |
. . . . . . . 8
|
| 42 | 39, 28, 41 | rspcdva 2886 |
. . . . . . 7
|
| 43 | 42, 3 | ltnegd 8626 |
. . . . . 6
|
| 44 | 37, 43 | mpbid 147 |
. . . . 5
|
| 45 | fveq2 5594 |
. . . . . . 7
| |
| 46 | 45 | negeqd 8297 |
. . . . . 6
|
| 47 | 6, 41 | sseldd 3198 |
. . . . . 6
|
| 48 | 42 | renegcld 8482 |
. . . . . 6
|
| 49 | 8, 46, 47, 48 | fvmptd3 5691 |
. . . . 5
|
| 50 | 44, 49 | breqtrrd 4082 |
. . . 4
|
| 51 | 36, 50 | jca 306 |
. . 3
|
| 52 | ivthdec.i |
. . . . 5
| |
| 53 | fveq2 5594 |
. . . . . . . 8
| |
| 54 | 53 | eleq1d 2275 |
. . . . . . 7
|
| 55 | simpll 527 |
. . . . . . . 8
| |
| 56 | 55, 28 | syl 14 |
. . . . . . 7
|
| 57 | simprl 529 |
. . . . . . 7
| |
| 58 | 54, 56, 57 | rspcdva 2886 |
. . . . . 6
|
| 59 | 14 | adantr 276 |
. . . . . 6
|
| 60 | 58, 59 | ltnegd 8626 |
. . . . 5
|
| 61 | 52, 60 | mpbid 147 |
. . . 4
|
| 62 | 13 | adantr 276 |
. . . . 5
|
| 63 | 15 | adantr 276 |
. . . . 5
|
| 64 | 8, 12, 62, 63 | fvmptd3 5691 |
. . . 4
|
| 65 | fveq2 5594 |
. . . . . 6
| |
| 66 | 65 | negeqd 8297 |
. . . . 5
|
| 67 | 6 | sseld 3196 |
. . . . . 6
|
| 68 | 55, 57, 67 | sylc 62 |
. . . . 5
|
| 69 | 58 | renegcld 8482 |
. . . . 5
|
| 70 | 8, 66, 68, 69 | fvmptd3 5691 |
. . . 4
|
| 71 | 61, 64, 70 | 3brtr4d 4086 |
. . 3
|
| 72 | 1, 2, 4, 5, 6, 10, 17, 51, 71 | ivthinc 15200 |
. 2
|
| 73 | fveq2 5594 |
. . . . . . 7
| |
| 74 | 73 | negeqd 8297 |
. . . . . 6
|
| 75 | ioossicc 10111 |
. . . . . . . 8
| |
| 76 | 75, 6 | sstrid 3208 |
. . . . . . 7
|
| 77 | 76 | sselda 3197 |
. . . . . 6
|
| 78 | fveq2 5594 |
. . . . . . . . 9
| |
| 79 | 78 | eleq1d 2275 |
. . . . . . . 8
|
| 80 | 28 | adantr 276 |
. . . . . . . 8
|
| 81 | 75 | sseli 3193 |
. . . . . . . . 9
|
| 82 | 81 | adantl 277 |
. . . . . . . 8
|
| 83 | 79, 80, 82 | rspcdva 2886 |
. . . . . . 7
|
| 84 | 83 | renegcld 8482 |
. . . . . 6
|
| 85 | 8, 74, 77, 84 | fvmptd3 5691 |
. . . . 5
|
| 86 | 85 | eqeq1d 2215 |
. . . 4
|
| 87 | cncff 15134 |
. . . . . . . 8
| |
| 88 | 7, 87 | syl 14 |
. . . . . . 7
|
| 89 | 88 | ffvelcdmda 5733 |
. . . . . 6
|
| 90 | 77, 89 | syldan 282 |
. . . . 5
|
| 91 | 3 | recnd 8131 |
. . . . . 6
|
| 92 | 91 | adantr 276 |
. . . . 5
|
| 93 | 90, 92 | neg11ad 8409 |
. . . 4
|
| 94 | 86, 93 | bitrd 188 |
. . 3
|
| 95 | 94 | rexbidva 2504 |
. 2
|
| 96 | 72, 95 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 ax-arch 8074 ax-caucvg 8075 ax-pre-suploc 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-isom 5294 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-frec 6495 df-map 6755 df-sup 7107 df-inf 7108 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-n0 9326 df-z 9403 df-uz 9679 df-rp 9806 df-ioo 10044 df-icc 10047 df-seqfrec 10625 df-exp 10716 df-cj 11238 df-re 11239 df-im 11240 df-rsqrt 11394 df-abs 11395 df-cncf 15128 |
| This theorem is referenced by: cosz12 15337 ioocosf1o 15411 |
| Copyright terms: Public domain | W3C validator |