ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthdec Unicode version

Theorem ivthdec 14964
Description: The intermediate value theorem, decreasing case, for a strictly monotonic function. (Contributed by Jim Kingdon, 20-Feb-2024.)
Hypotheses
Ref Expression
ivth.1  |-  ( ph  ->  A  e.  RR )
ivth.2  |-  ( ph  ->  B  e.  RR )
ivth.3  |-  ( ph  ->  U  e.  RR )
ivth.4  |-  ( ph  ->  A  <  B )
ivth.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivth.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivth.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
ivthdec.9  |-  ( ph  ->  ( ( F `  B )  <  U  /\  U  <  ( F `
 A ) ) )
ivthdec.i  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  y )  <  ( F `  x )
)
Assertion
Ref Expression
ivthdec  |-  ( ph  ->  E. c  e.  ( A (,) B ) ( F `  c
)  =  U )
Distinct variable groups:    A, c, x   
y, A, x    B, c, x    y, B    D, c, x    y, D    F, c, x    y, F    U, c, x    y, U    ph, c, x    ph, y

Proof of Theorem ivthdec
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ivth.1 . . 3  |-  ( ph  ->  A  e.  RR )
2 ivth.2 . . 3  |-  ( ph  ->  B  e.  RR )
3 ivth.3 . . . 4  |-  ( ph  ->  U  e.  RR )
43renegcld 8423 . . 3  |-  ( ph  -> 
-u U  e.  RR )
5 ivth.4 . . 3  |-  ( ph  ->  A  <  B )
6 ivth.5 . . 3  |-  ( ph  ->  ( A [,] B
)  C_  D )
7 ivth.7 . . . 4  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
8 eqid 2196 . . . . 5  |-  ( w  e.  D  |->  -u ( F `  w )
)  =  ( w  e.  D  |->  -u ( F `  w )
)
98negfcncf 14926 . . . 4  |-  ( F  e.  ( D -cn-> CC )  ->  ( w  e.  D  |->  -u ( F `  w )
)  e.  ( D
-cn-> CC ) )
107, 9syl 14 . . 3  |-  ( ph  ->  ( w  e.  D  |-> 
-u ( F `  w ) )  e.  ( D -cn-> CC ) )
11 fveq2 5561 . . . . . 6  |-  ( w  =  x  ->  ( F `  w )  =  ( F `  x ) )
1211negeqd 8238 . . . . 5  |-  ( w  =  x  ->  -u ( F `  w )  =  -u ( F `  x ) )
136sselda 3184 . . . . 5  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  e.  D )
14 ivth.8 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
1514renegcld 8423 . . . . 5  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  -u ( F `
 x )  e.  RR )
168, 12, 13, 15fvmptd3 5658 . . . 4  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( (
w  e.  D  |->  -u ( F `  w ) ) `  x )  =  -u ( F `  x ) )
1716, 15eqeltrd 2273 . . 3  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( (
w  e.  D  |->  -u ( F `  w ) ) `  x )  e.  RR )
18 fveq2 5561 . . . . . . 7  |-  ( w  =  A  ->  ( F `  w )  =  ( F `  A ) )
1918negeqd 8238 . . . . . 6  |-  ( w  =  A  ->  -u ( F `  w )  =  -u ( F `  A ) )
201rexrd 8093 . . . . . . . 8  |-  ( ph  ->  A  e.  RR* )
212rexrd 8093 . . . . . . . 8  |-  ( ph  ->  B  e.  RR* )
221, 2, 5ltled 8162 . . . . . . . 8  |-  ( ph  ->  A  <_  B )
23 lbicc2 10076 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
2420, 21, 22, 23syl3anc 1249 . . . . . . 7  |-  ( ph  ->  A  e.  ( A [,] B ) )
256, 24sseldd 3185 . . . . . 6  |-  ( ph  ->  A  e.  D )
26 fveq2 5561 . . . . . . . . 9  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
2726eleq1d 2265 . . . . . . . 8  |-  ( x  =  A  ->  (
( F `  x
)  e.  RR  <->  ( F `  A )  e.  RR ) )
2814ralrimiva 2570 . . . . . . . 8  |-  ( ph  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
2927, 28, 24rspcdva 2873 . . . . . . 7  |-  ( ph  ->  ( F `  A
)  e.  RR )
3029renegcld 8423 . . . . . 6  |-  ( ph  -> 
-u ( F `  A )  e.  RR )
318, 19, 25, 30fvmptd3 5658 . . . . 5  |-  ( ph  ->  ( ( w  e.  D  |->  -u ( F `  w ) ) `  A )  =  -u ( F `  A ) )
32 ivthdec.9 . . . . . . 7  |-  ( ph  ->  ( ( F `  B )  <  U  /\  U  <  ( F `
 A ) ) )
3332simprd 114 . . . . . 6  |-  ( ph  ->  U  <  ( F `
 A ) )
343, 29ltnegd 8567 . . . . . 6  |-  ( ph  ->  ( U  <  ( F `  A )  <->  -u ( F `  A
)  <  -u U ) )
3533, 34mpbid 147 . . . . 5  |-  ( ph  -> 
-u ( F `  A )  <  -u U
)
3631, 35eqbrtrd 4056 . . . 4  |-  ( ph  ->  ( ( w  e.  D  |->  -u ( F `  w ) ) `  A )  <  -u U
)
3732simpld 112 . . . . . 6  |-  ( ph  ->  ( F `  B
)  <  U )
38 fveq2 5561 . . . . . . . . 9  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
3938eleq1d 2265 . . . . . . . 8  |-  ( x  =  B  ->  (
( F `  x
)  e.  RR  <->  ( F `  B )  e.  RR ) )
40 ubicc2 10077 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
4120, 21, 22, 40syl3anc 1249 . . . . . . . 8  |-  ( ph  ->  B  e.  ( A [,] B ) )
4239, 28, 41rspcdva 2873 . . . . . . 7  |-  ( ph  ->  ( F `  B
)  e.  RR )
4342, 3ltnegd 8567 . . . . . 6  |-  ( ph  ->  ( ( F `  B )  <  U  <->  -u U  <  -u ( F `  B )
) )
4437, 43mpbid 147 . . . . 5  |-  ( ph  -> 
-u U  <  -u ( F `  B )
)
45 fveq2 5561 . . . . . . 7  |-  ( w  =  B  ->  ( F `  w )  =  ( F `  B ) )
4645negeqd 8238 . . . . . 6  |-  ( w  =  B  ->  -u ( F `  w )  =  -u ( F `  B ) )
476, 41sseldd 3185 . . . . . 6  |-  ( ph  ->  B  e.  D )
4842renegcld 8423 . . . . . 6  |-  ( ph  -> 
-u ( F `  B )  e.  RR )
498, 46, 47, 48fvmptd3 5658 . . . . 5  |-  ( ph  ->  ( ( w  e.  D  |->  -u ( F `  w ) ) `  B )  =  -u ( F `  B ) )
5044, 49breqtrrd 4062 . . . 4  |-  ( ph  -> 
-u U  <  (
( w  e.  D  |-> 
-u ( F `  w ) ) `  B ) )
5136, 50jca 306 . . 3  |-  ( ph  ->  ( ( ( w  e.  D  |->  -u ( F `  w )
) `  A )  <  -u U  /\  -u U  <  ( ( w  e.  D  |->  -u ( F `  w ) ) `  B ) ) )
52 ivthdec.i . . . . 5  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  y )  <  ( F `  x )
)
53 fveq2 5561 . . . . . . . 8  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
5453eleq1d 2265 . . . . . . 7  |-  ( x  =  y  ->  (
( F `  x
)  e.  RR  <->  ( F `  y )  e.  RR ) )
55 simpll 527 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ph )
5655, 28syl 14 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
57 simprl 529 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  y  e.  ( A [,] B ) )
5854, 56, 57rspcdva 2873 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  y )  e.  RR )
5914adantr 276 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  e.  RR )
6058, 59ltnegd 8567 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( ( F `
 y )  < 
( F `  x
)  <->  -u ( F `  x )  <  -u ( F `  y )
) )
6152, 60mpbid 147 . . . 4  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  -u ( F `  x )  <  -u ( F `  y )
)
6213adantr 276 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  x  e.  D
)
6315adantr 276 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  -u ( F `  x )  e.  RR )
648, 12, 62, 63fvmptd3 5658 . . . 4  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( ( w  e.  D  |->  -u ( F `  w )
) `  x )  =  -u ( F `  x ) )
65 fveq2 5561 . . . . . 6  |-  ( w  =  y  ->  ( F `  w )  =  ( F `  y ) )
6665negeqd 8238 . . . . 5  |-  ( w  =  y  ->  -u ( F `  w )  =  -u ( F `  y ) )
676sseld 3183 . . . . . 6  |-  ( ph  ->  ( y  e.  ( A [,] B )  ->  y  e.  D
) )
6855, 57, 67sylc 62 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  y  e.  D
)
6958renegcld 8423 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  -u ( F `  y )  e.  RR )
708, 66, 68, 69fvmptd3 5658 . . . 4  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( ( w  e.  D  |->  -u ( F `  w )
) `  y )  =  -u ( F `  y ) )
7161, 64, 703brtr4d 4066 . . 3  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( ( w  e.  D  |->  -u ( F `  w )
) `  x )  <  ( ( w  e.  D  |->  -u ( F `  w ) ) `  y ) )
721, 2, 4, 5, 6, 10, 17, 51, 71ivthinc 14963 . 2  |-  ( ph  ->  E. c  e.  ( A (,) B ) ( ( w  e.  D  |->  -u ( F `  w ) ) `  c )  =  -u U )
73 fveq2 5561 . . . . . . 7  |-  ( w  =  c  ->  ( F `  w )  =  ( F `  c ) )
7473negeqd 8238 . . . . . 6  |-  ( w  =  c  ->  -u ( F `  w )  =  -u ( F `  c ) )
75 ioossicc 10051 . . . . . . . 8  |-  ( A (,) B )  C_  ( A [,] B )
7675, 6sstrid 3195 . . . . . . 7  |-  ( ph  ->  ( A (,) B
)  C_  D )
7776sselda 3184 . . . . . 6  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  c  e.  D )
78 fveq2 5561 . . . . . . . . 9  |-  ( x  =  c  ->  ( F `  x )  =  ( F `  c ) )
7978eleq1d 2265 . . . . . . . 8  |-  ( x  =  c  ->  (
( F `  x
)  e.  RR  <->  ( F `  c )  e.  RR ) )
8028adantr 276 . . . . . . . 8  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  A. x  e.  ( A [,] B
) ( F `  x )  e.  RR )
8175sseli 3180 . . . . . . . . 9  |-  ( c  e.  ( A (,) B )  ->  c  e.  ( A [,] B
) )
8281adantl 277 . . . . . . . 8  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  c  e.  ( A [,] B ) )
8379, 80, 82rspcdva 2873 . . . . . . 7  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( F `  c )  e.  RR )
8483renegcld 8423 . . . . . 6  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  -u ( F `
 c )  e.  RR )
858, 74, 77, 84fvmptd3 5658 . . . . 5  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( (
w  e.  D  |->  -u ( F `  w ) ) `  c )  =  -u ( F `  c ) )
8685eqeq1d 2205 . . . 4  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( (
( w  e.  D  |-> 
-u ( F `  w ) ) `  c )  =  -u U 
<-> 
-u ( F `  c )  =  -u U ) )
87 cncff 14897 . . . . . . . 8  |-  ( F  e.  ( D -cn-> CC )  ->  F : D
--> CC )
887, 87syl 14 . . . . . . 7  |-  ( ph  ->  F : D --> CC )
8988ffvelcdmda 5700 . . . . . 6  |-  ( (
ph  /\  c  e.  D )  ->  ( F `  c )  e.  CC )
9077, 89syldan 282 . . . . 5  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( F `  c )  e.  CC )
913recnd 8072 . . . . . 6  |-  ( ph  ->  U  e.  CC )
9291adantr 276 . . . . 5  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  U  e.  CC )
9390, 92neg11ad 8350 . . . 4  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( -u ( F `  c )  =  -u U  <->  ( F `  c )  =  U ) )
9486, 93bitrd 188 . . 3  |-  ( (
ph  /\  c  e.  ( A (,) B ) )  ->  ( (
( w  e.  D  |-> 
-u ( F `  w ) ) `  c )  =  -u U 
<->  ( F `  c
)  =  U ) )
9594rexbidva 2494 . 2  |-  ( ph  ->  ( E. c  e.  ( A (,) B
) ( ( w  e.  D  |->  -u ( F `  w )
) `  c )  =  -u U  <->  E. c  e.  ( A (,) B
) ( F `  c )  =  U ) )
9672, 95mpbid 147 1  |-  ( ph  ->  E. c  e.  ( A (,) B ) ( F `  c
)  =  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476    C_ wss 3157   class class class wbr 4034    |-> cmpt 4095   -->wf 5255   ` cfv 5259  (class class class)co 5925   CCcc 7894   RRcr 7895   RR*cxr 8077    < clt 8078    <_ cle 8079   -ucneg 8215   (,)cioo 9980   [,]cicc 9983   -cn->ccncf 14890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016  ax-pre-suploc 8017
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-rp 9746  df-ioo 9984  df-icc 9987  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-cncf 14891
This theorem is referenced by:  cosz12  15100  ioocosf1o  15174
  Copyright terms: Public domain W3C validator