ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topnidg GIF version

Theorem topnidg 13285
Description: Value of the topology extractor function when the topology is defined over the same set as the base. (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
topnval.1 𝐵 = (Base‘𝑊)
topnval.2 𝐽 = (TopSet‘𝑊)
Assertion
Ref Expression
topnidg ((𝑊𝑉𝐽 ⊆ 𝒫 𝐵) → 𝐽 = (TopOpen‘𝑊))

Proof of Theorem topnidg
StepHypRef Expression
1 topnval.1 . . . 4 𝐵 = (Base‘𝑊)
2 baseslid 13090 . . . . 5 (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
32slotex 13059 . . . 4 (𝑊𝑉 → (Base‘𝑊) ∈ V)
41, 3eqeltrid 2316 . . 3 (𝑊𝑉𝐵 ∈ V)
5 restid2 13281 . . 3 ((𝐵 ∈ V ∧ 𝐽 ⊆ 𝒫 𝐵) → (𝐽t 𝐵) = 𝐽)
64, 5sylan 283 . 2 ((𝑊𝑉𝐽 ⊆ 𝒫 𝐵) → (𝐽t 𝐵) = 𝐽)
7 topnval.2 . . . 4 𝐽 = (TopSet‘𝑊)
81, 7topnvalg 13284 . . 3 (𝑊𝑉 → (𝐽t 𝐵) = (TopOpen‘𝑊))
98adantr 276 . 2 ((𝑊𝑉𝐽 ⊆ 𝒫 𝐵) → (𝐽t 𝐵) = (TopOpen‘𝑊))
106, 9eqtr3d 2264 1 ((𝑊𝑉𝐽 ⊆ 𝒫 𝐵) → 𝐽 = (TopOpen‘𝑊))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  wss 3197  𝒫 cpw 3649  cfv 5318  (class class class)co 6001  Basecbs 13032  TopSetcts 13116  t crest 13272  TopOpenctopn 13273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-ndx 13035  df-slot 13036  df-base 13038  df-tset 13129  df-rest 13274  df-topn 13275
This theorem is referenced by:  topontopn  14711
  Copyright terms: Public domain W3C validator