ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topssnei GIF version

Theorem topssnei 14709
Description: A finer topology has more neighborhoods. (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypotheses
Ref Expression
tpnei.1 𝑋 = 𝐽
topssnei.2 𝑌 = 𝐾
Assertion
Ref Expression
topssnei (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ 𝐽𝐾) → ((nei‘𝐽)‘𝑆) ⊆ ((nei‘𝐾)‘𝑆))

Proof of Theorem topssnei
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1004 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝐾 ∈ Top)
2 simprl 529 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝐽𝐾)
3 simpl1 1003 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝐽 ∈ Top)
4 simprr 531 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
5 tpnei.1 . . . . . . . . 9 𝑋 = 𝐽
65neii1 14694 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → 𝑥𝑋)
73, 4, 6syl2anc 411 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑥𝑋)
85ntropn 14664 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑥𝑋) → ((int‘𝐽)‘𝑥) ∈ 𝐽)
93, 7, 8syl2anc 411 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → ((int‘𝐽)‘𝑥) ∈ 𝐽)
102, 9sseldd 3198 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → ((int‘𝐽)‘𝑥) ∈ 𝐾)
115neiss2 14689 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑋)
123, 4, 11syl2anc 411 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑆𝑋)
135neiint 14692 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑥𝑋) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑥)))
143, 12, 7, 13syl3anc 1250 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑥)))
154, 14mpbid 147 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑆 ⊆ ((int‘𝐽)‘𝑥))
16 opnneiss 14705 . . . . 5 ((𝐾 ∈ Top ∧ ((int‘𝐽)‘𝑥) ∈ 𝐾𝑆 ⊆ ((int‘𝐽)‘𝑥)) → ((int‘𝐽)‘𝑥) ∈ ((nei‘𝐾)‘𝑆))
171, 10, 15, 16syl3anc 1250 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → ((int‘𝐽)‘𝑥) ∈ ((nei‘𝐾)‘𝑆))
185ntrss2 14668 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝑋) → ((int‘𝐽)‘𝑥) ⊆ 𝑥)
193, 7, 18syl2anc 411 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → ((int‘𝐽)‘𝑥) ⊆ 𝑥)
20 simpl3 1005 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑋 = 𝑌)
217, 20sseqtrd 3235 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑥𝑌)
22 topssnei.2 . . . . 5 𝑌 = 𝐾
2322ssnei2 14704 . . . 4 (((𝐾 ∈ Top ∧ ((int‘𝐽)‘𝑥) ∈ ((nei‘𝐾)‘𝑆)) ∧ (((int‘𝐽)‘𝑥) ⊆ 𝑥𝑥𝑌)) → 𝑥 ∈ ((nei‘𝐾)‘𝑆))
241, 17, 19, 21, 23syl22anc 1251 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑥 ∈ ((nei‘𝐾)‘𝑆))
2524expr 375 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ 𝐽𝐾) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) → 𝑥 ∈ ((nei‘𝐾)‘𝑆)))
2625ssrdv 3203 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ 𝐽𝐾) → ((nei‘𝐽)‘𝑆) ⊆ ((nei‘𝐾)‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  wss 3170   cuni 3856  cfv 5280  Topctop 14544  intcnt 14640  neicnei 14685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-top 14545  df-ntr 14643  df-nei 14686
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator