Step | Hyp | Ref
| Expression |
1 | | simpl2 996 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝐾 ∈ Top) |
2 | | simprl 526 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝐽 ⊆ 𝐾) |
3 | | simpl1 995 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝐽 ∈ Top) |
4 | | simprr 527 |
. . . . . . . 8
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑥 ∈ ((nei‘𝐽)‘𝑆)) |
5 | | tpnei.1 |
. . . . . . . . 9
⊢ 𝑋 = ∪
𝐽 |
6 | 5 | neii1 12900 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → 𝑥 ⊆ 𝑋) |
7 | 3, 4, 6 | syl2anc 409 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑥 ⊆ 𝑋) |
8 | 5 | ntropn 12870 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋) → ((int‘𝐽)‘𝑥) ∈ 𝐽) |
9 | 3, 7, 8 | syl2anc 409 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → ((int‘𝐽)‘𝑥) ∈ 𝐽) |
10 | 2, 9 | sseldd 3148 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → ((int‘𝐽)‘𝑥) ∈ 𝐾) |
11 | 5 | neiss2 12895 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑋) |
12 | 3, 4, 11 | syl2anc 409 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑆 ⊆ 𝑋) |
13 | 5 | neiint 12898 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑥))) |
14 | 3, 12, 7, 13 | syl3anc 1233 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑥))) |
15 | 4, 14 | mpbid 146 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑆 ⊆ ((int‘𝐽)‘𝑥)) |
16 | | opnneiss 12911 |
. . . . 5
⊢ ((𝐾 ∈ Top ∧
((int‘𝐽)‘𝑥) ∈ 𝐾 ∧ 𝑆 ⊆ ((int‘𝐽)‘𝑥)) → ((int‘𝐽)‘𝑥) ∈ ((nei‘𝐾)‘𝑆)) |
17 | 1, 10, 15, 16 | syl3anc 1233 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → ((int‘𝐽)‘𝑥) ∈ ((nei‘𝐾)‘𝑆)) |
18 | 5 | ntrss2 12874 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋) → ((int‘𝐽)‘𝑥) ⊆ 𝑥) |
19 | 3, 7, 18 | syl2anc 409 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → ((int‘𝐽)‘𝑥) ⊆ 𝑥) |
20 | | simpl3 997 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑋 = 𝑌) |
21 | 7, 20 | sseqtrd 3185 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑥 ⊆ 𝑌) |
22 | | topssnei.2 |
. . . . 5
⊢ 𝑌 = ∪
𝐾 |
23 | 22 | ssnei2 12910 |
. . . 4
⊢ (((𝐾 ∈ Top ∧
((int‘𝐽)‘𝑥) ∈ ((nei‘𝐾)‘𝑆)) ∧ (((int‘𝐽)‘𝑥) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑌)) → 𝑥 ∈ ((nei‘𝐾)‘𝑆)) |
24 | 1, 17, 19, 21, 23 | syl22anc 1234 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽 ⊆ 𝐾 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑥 ∈ ((nei‘𝐾)‘𝑆)) |
25 | 24 | expr 373 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ 𝐽 ⊆ 𝐾) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) → 𝑥 ∈ ((nei‘𝐾)‘𝑆))) |
26 | 25 | ssrdv 3153 |
1
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ 𝐽 ⊆ 𝐾) → ((nei‘𝐽)‘𝑆) ⊆ ((nei‘𝐾)‘𝑆)) |