ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topssnei GIF version

Theorem topssnei 12956
Description: A finer topology has more neighborhoods. (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypotheses
Ref Expression
tpnei.1 𝑋 = 𝐽
topssnei.2 𝑌 = 𝐾
Assertion
Ref Expression
topssnei (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ 𝐽𝐾) → ((nei‘𝐽)‘𝑆) ⊆ ((nei‘𝐾)‘𝑆))

Proof of Theorem topssnei
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl2 996 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝐾 ∈ Top)
2 simprl 526 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝐽𝐾)
3 simpl1 995 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝐽 ∈ Top)
4 simprr 527 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑥 ∈ ((nei‘𝐽)‘𝑆))
5 tpnei.1 . . . . . . . . 9 𝑋 = 𝐽
65neii1 12941 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → 𝑥𝑋)
73, 4, 6syl2anc 409 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑥𝑋)
85ntropn 12911 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑥𝑋) → ((int‘𝐽)‘𝑥) ∈ 𝐽)
93, 7, 8syl2anc 409 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → ((int‘𝐽)‘𝑥) ∈ 𝐽)
102, 9sseldd 3148 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → ((int‘𝐽)‘𝑥) ∈ 𝐾)
115neiss2 12936 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑋)
123, 4, 11syl2anc 409 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑆𝑋)
135neiint 12939 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑥𝑋) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑥)))
143, 12, 7, 13syl3anc 1233 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑥)))
154, 14mpbid 146 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑆 ⊆ ((int‘𝐽)‘𝑥))
16 opnneiss 12952 . . . . 5 ((𝐾 ∈ Top ∧ ((int‘𝐽)‘𝑥) ∈ 𝐾𝑆 ⊆ ((int‘𝐽)‘𝑥)) → ((int‘𝐽)‘𝑥) ∈ ((nei‘𝐾)‘𝑆))
171, 10, 15, 16syl3anc 1233 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → ((int‘𝐽)‘𝑥) ∈ ((nei‘𝐾)‘𝑆))
185ntrss2 12915 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝑋) → ((int‘𝐽)‘𝑥) ⊆ 𝑥)
193, 7, 18syl2anc 409 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → ((int‘𝐽)‘𝑥) ⊆ 𝑥)
20 simpl3 997 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑋 = 𝑌)
217, 20sseqtrd 3185 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑥𝑌)
22 topssnei.2 . . . . 5 𝑌 = 𝐾
2322ssnei2 12951 . . . 4 (((𝐾 ∈ Top ∧ ((int‘𝐽)‘𝑥) ∈ ((nei‘𝐾)‘𝑆)) ∧ (((int‘𝐽)‘𝑥) ⊆ 𝑥𝑥𝑌)) → 𝑥 ∈ ((nei‘𝐾)‘𝑆))
241, 17, 19, 21, 23syl22anc 1234 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ (𝐽𝐾𝑥 ∈ ((nei‘𝐽)‘𝑆))) → 𝑥 ∈ ((nei‘𝐾)‘𝑆))
2524expr 373 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ 𝐽𝐾) → (𝑥 ∈ ((nei‘𝐽)‘𝑆) → 𝑥 ∈ ((nei‘𝐾)‘𝑆)))
2625ssrdv 3153 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ 𝐽𝐾) → ((nei‘𝐽)‘𝑆) ⊆ ((nei‘𝐾)‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  wss 3121   cuni 3796  cfv 5198  Topctop 12789  intcnt 12887  neicnei 12932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-top 12790  df-ntr 12890  df-nei 12933
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator