| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > redc0 | Unicode version | ||
| Description: Two ways to express decidability of real number equality. (Contributed by Jim Kingdon, 23-Jul-2024.) |
| Ref | Expression |
|---|---|
| redc0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8142 |
. . . . 5
| |
| 2 | eqeq1 2236 |
. . . . . . 7
| |
| 3 | 2 | dcbid 843 |
. . . . . 6
|
| 4 | eqeq2 2239 |
. . . . . . 7
| |
| 5 | 4 | dcbid 843 |
. . . . . 6
|
| 6 | 3, 5 | rspc2v 2920 |
. . . . 5
|
| 7 | 1, 6 | mpan2 425 |
. . . 4
|
| 8 | 7 | impcom 125 |
. . 3
|
| 9 | 8 | ralrimiva 2603 |
. 2
|
| 10 | eqeq1 2236 |
. . . . . 6
| |
| 11 | 10 | dcbid 843 |
. . . . 5
|
| 12 | simpl 109 |
. . . . 5
| |
| 13 | resubcl 8406 |
. . . . . 6
| |
| 14 | 13 | adantl 277 |
. . . . 5
|
| 15 | 11, 12, 14 | rspcdva 2912 |
. . . 4
|
| 16 | simprl 529 |
. . . . . . 7
| |
| 17 | 16 | recnd 8171 |
. . . . . 6
|
| 18 | simprr 531 |
. . . . . . 7
| |
| 19 | 18 | recnd 8171 |
. . . . . 6
|
| 20 | 17, 19 | subeq0ad 8463 |
. . . . 5
|
| 21 | 20 | dcbid 843 |
. . . 4
|
| 22 | 15, 21 | mpbid 147 |
. . 3
|
| 23 | 22 | ralrimivva 2612 |
. 2
|
| 24 | 9, 23 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-sub 8315 df-neg 8316 |
| This theorem is referenced by: dcapnconstALT 16389 |
| Copyright terms: Public domain | W3C validator |