Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  redc0 Unicode version

Theorem redc0 15547
Description: Two ways to express decidability of real number equality. (Contributed by Jim Kingdon, 23-Jul-2024.)
Assertion
Ref Expression
redc0  |-  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  <->  A. z  e.  RR DECID  z  =  0 )
Distinct variable group:    x, y, z

Proof of Theorem redc0
StepHypRef Expression
1 0re 8019 . . . . 5  |-  0  e.  RR
2 eqeq1 2200 . . . . . . 7  |-  ( x  =  z  ->  (
x  =  y  <->  z  =  y ) )
32dcbid 839 . . . . . 6  |-  ( x  =  z  ->  (DECID  x  =  y  <-> DECID  z  =  y )
)
4 eqeq2 2203 . . . . . . 7  |-  ( y  =  0  ->  (
z  =  y  <->  z  = 
0 ) )
54dcbid 839 . . . . . 6  |-  ( y  =  0  ->  (DECID  z  =  y  <-> DECID  z  =  0 ) )
63, 5rspc2v 2877 . . . . 5  |-  ( ( z  e.  RR  /\  0  e.  RR )  ->  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  -> DECID  z  =  0 ) )
71, 6mpan2 425 . . . 4  |-  ( z  e.  RR  ->  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  -> DECID 
z  =  0 ) )
87impcom 125 . . 3  |-  ( ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  /\  z  e.  RR )  -> DECID 
z  =  0 )
98ralrimiva 2567 . 2  |-  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  ->  A. z  e.  RR DECID  z  =  0 )
10 eqeq1 2200 . . . . . 6  |-  ( z  =  ( x  -  y )  ->  (
z  =  0  <->  (
x  -  y )  =  0 ) )
1110dcbid 839 . . . . 5  |-  ( z  =  ( x  -  y )  ->  (DECID  z  =  0  <-> DECID  ( x  -  y
)  =  0 ) )
12 simpl 109 . . . . 5  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  A. z  e.  RR DECID  z  =  0 )
13 resubcl 8283 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  -  y
)  e.  RR )
1413adantl 277 . . . . 5  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( x  -  y )  e.  RR )
1511, 12, 14rspcdva 2869 . . . 4  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  -> DECID  ( x  -  y
)  =  0 )
16 simprl 529 . . . . . . 7  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  x  e.  RR )
1716recnd 8048 . . . . . 6  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  x  e.  CC )
18 simprr 531 . . . . . . 7  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  y  e.  RR )
1918recnd 8048 . . . . . 6  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  y  e.  CC )
2017, 19subeq0ad 8340 . . . . 5  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( (
x  -  y )  =  0  <->  x  =  y ) )
2120dcbid 839 . . . 4  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  (DECID  ( x  -  y )  =  0  <-> DECID  x  =  y )
)
2215, 21mpbid 147 . . 3  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  -> DECID  x  =  y
)
2322ralrimivva 2576 . 2  |-  ( A. z  e.  RR DECID  z  =  0  ->  A. x  e.  RR  A. y  e.  RR DECID  x  =  y )
249, 23impbii 126 1  |-  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  <->  A. z  e.  RR DECID  z  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2164   A.wral 2472  (class class class)co 5918   RRcr 7871   0cc0 7872    - cmin 8190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-setind 4569  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-sub 8192  df-neg 8193
This theorem is referenced by:  dcapnconstALT  15552
  Copyright terms: Public domain W3C validator