Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  redc0 Unicode version

Theorem redc0 13599
Description: Two ways to express decidability of real number equality. (Contributed by Jim Kingdon, 23-Jul-2024.)
Assertion
Ref Expression
redc0  |-  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  <->  A. z  e.  RR DECID  z  =  0 )
Distinct variable group:    x, y, z

Proof of Theorem redc0
StepHypRef Expression
1 0re 7872 . . . . 5  |-  0  e.  RR
2 eqeq1 2164 . . . . . . 7  |-  ( x  =  z  ->  (
x  =  y  <->  z  =  y ) )
32dcbid 824 . . . . . 6  |-  ( x  =  z  ->  (DECID  x  =  y  <-> DECID  z  =  y )
)
4 eqeq2 2167 . . . . . . 7  |-  ( y  =  0  ->  (
z  =  y  <->  z  = 
0 ) )
54dcbid 824 . . . . . 6  |-  ( y  =  0  ->  (DECID  z  =  y  <-> DECID  z  =  0 ) )
63, 5rspc2v 2829 . . . . 5  |-  ( ( z  e.  RR  /\  0  e.  RR )  ->  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  -> DECID  z  =  0 ) )
71, 6mpan2 422 . . . 4  |-  ( z  e.  RR  ->  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  -> DECID 
z  =  0 ) )
87impcom 124 . . 3  |-  ( ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  /\  z  e.  RR )  -> DECID 
z  =  0 )
98ralrimiva 2530 . 2  |-  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  ->  A. z  e.  RR DECID  z  =  0 )
10 eqeq1 2164 . . . . . 6  |-  ( z  =  ( x  -  y )  ->  (
z  =  0  <->  (
x  -  y )  =  0 ) )
1110dcbid 824 . . . . 5  |-  ( z  =  ( x  -  y )  ->  (DECID  z  =  0  <-> DECID  ( x  -  y
)  =  0 ) )
12 simpl 108 . . . . 5  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  A. z  e.  RR DECID  z  =  0 )
13 resubcl 8133 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  -  y
)  e.  RR )
1413adantl 275 . . . . 5  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( x  -  y )  e.  RR )
1511, 12, 14rspcdva 2821 . . . 4  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  -> DECID  ( x  -  y
)  =  0 )
16 simprl 521 . . . . . . 7  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  x  e.  RR )
1716recnd 7900 . . . . . 6  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  x  e.  CC )
18 simprr 522 . . . . . . 7  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  y  e.  RR )
1918recnd 7900 . . . . . 6  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  y  e.  CC )
2017, 19subeq0ad 8190 . . . . 5  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( (
x  -  y )  =  0  <->  x  =  y ) )
2120dcbid 824 . . . 4  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  (DECID  ( x  -  y )  =  0  <-> DECID  x  =  y )
)
2215, 21mpbid 146 . . 3  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  -> DECID  x  =  y
)
2322ralrimivva 2539 . 2  |-  ( A. z  e.  RR DECID  z  =  0  ->  A. x  e.  RR  A. y  e.  RR DECID  x  =  y )
249, 23impbii 125 1  |-  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  <->  A. z  e.  RR DECID  z  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 820    = wceq 1335    e. wcel 2128   A.wral 2435  (class class class)co 5821   RRcr 7725   0cc0 7726    - cmin 8040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-setind 4495  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-addcom 7826  ax-addass 7828  ax-distr 7830  ax-i2m1 7831  ax-0id 7834  ax-rnegex 7835  ax-cnre 7837
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-iota 5134  df-fun 5171  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-sub 8042  df-neg 8043
This theorem is referenced by:  dcapnconstALT  13603
  Copyright terms: Public domain W3C validator