Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  redc0 Unicode version

Theorem redc0 15958
Description: Two ways to express decidability of real number equality. (Contributed by Jim Kingdon, 23-Jul-2024.)
Assertion
Ref Expression
redc0  |-  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  <->  A. z  e.  RR DECID  z  =  0 )
Distinct variable group:    x, y, z

Proof of Theorem redc0
StepHypRef Expression
1 0re 8071 . . . . 5  |-  0  e.  RR
2 eqeq1 2211 . . . . . . 7  |-  ( x  =  z  ->  (
x  =  y  <->  z  =  y ) )
32dcbid 839 . . . . . 6  |-  ( x  =  z  ->  (DECID  x  =  y  <-> DECID  z  =  y )
)
4 eqeq2 2214 . . . . . . 7  |-  ( y  =  0  ->  (
z  =  y  <->  z  = 
0 ) )
54dcbid 839 . . . . . 6  |-  ( y  =  0  ->  (DECID  z  =  y  <-> DECID  z  =  0 ) )
63, 5rspc2v 2889 . . . . 5  |-  ( ( z  e.  RR  /\  0  e.  RR )  ->  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  -> DECID  z  =  0 ) )
71, 6mpan2 425 . . . 4  |-  ( z  e.  RR  ->  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  -> DECID 
z  =  0 ) )
87impcom 125 . . 3  |-  ( ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  /\  z  e.  RR )  -> DECID 
z  =  0 )
98ralrimiva 2578 . 2  |-  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  ->  A. z  e.  RR DECID  z  =  0 )
10 eqeq1 2211 . . . . . 6  |-  ( z  =  ( x  -  y )  ->  (
z  =  0  <->  (
x  -  y )  =  0 ) )
1110dcbid 839 . . . . 5  |-  ( z  =  ( x  -  y )  ->  (DECID  z  =  0  <-> DECID  ( x  -  y
)  =  0 ) )
12 simpl 109 . . . . 5  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  A. z  e.  RR DECID  z  =  0 )
13 resubcl 8335 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  -  y
)  e.  RR )
1413adantl 277 . . . . 5  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( x  -  y )  e.  RR )
1511, 12, 14rspcdva 2881 . . . 4  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  -> DECID  ( x  -  y
)  =  0 )
16 simprl 529 . . . . . . 7  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  x  e.  RR )
1716recnd 8100 . . . . . 6  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  x  e.  CC )
18 simprr 531 . . . . . . 7  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  y  e.  RR )
1918recnd 8100 . . . . . 6  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  y  e.  CC )
2017, 19subeq0ad 8392 . . . . 5  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( (
x  -  y )  =  0  <->  x  =  y ) )
2120dcbid 839 . . . 4  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  (DECID  ( x  -  y )  =  0  <-> DECID  x  =  y )
)
2215, 21mpbid 147 . . 3  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  -> DECID  x  =  y
)
2322ralrimivva 2587 . 2  |-  ( A. z  e.  RR DECID  z  =  0  ->  A. x  e.  RR  A. y  e.  RR DECID  x  =  y )
249, 23impbii 126 1  |-  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  <->  A. z  e.  RR DECID  z  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1372    e. wcel 2175   A.wral 2483  (class class class)co 5943   RRcr 7923   0cc0 7924    - cmin 8242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-setind 4584  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-sub 8244  df-neg 8245
This theorem is referenced by:  dcapnconstALT  15963
  Copyright terms: Public domain W3C validator