Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  redc0 Unicode version

Theorem redc0 15788
Description: Two ways to express decidability of real number equality. (Contributed by Jim Kingdon, 23-Jul-2024.)
Assertion
Ref Expression
redc0  |-  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  <->  A. z  e.  RR DECID  z  =  0 )
Distinct variable group:    x, y, z

Proof of Theorem redc0
StepHypRef Expression
1 0re 8043 . . . . 5  |-  0  e.  RR
2 eqeq1 2203 . . . . . . 7  |-  ( x  =  z  ->  (
x  =  y  <->  z  =  y ) )
32dcbid 839 . . . . . 6  |-  ( x  =  z  ->  (DECID  x  =  y  <-> DECID  z  =  y )
)
4 eqeq2 2206 . . . . . . 7  |-  ( y  =  0  ->  (
z  =  y  <->  z  = 
0 ) )
54dcbid 839 . . . . . 6  |-  ( y  =  0  ->  (DECID  z  =  y  <-> DECID  z  =  0 ) )
63, 5rspc2v 2881 . . . . 5  |-  ( ( z  e.  RR  /\  0  e.  RR )  ->  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  -> DECID  z  =  0 ) )
71, 6mpan2 425 . . . 4  |-  ( z  e.  RR  ->  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  -> DECID 
z  =  0 ) )
87impcom 125 . . 3  |-  ( ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  /\  z  e.  RR )  -> DECID 
z  =  0 )
98ralrimiva 2570 . 2  |-  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  ->  A. z  e.  RR DECID  z  =  0 )
10 eqeq1 2203 . . . . . 6  |-  ( z  =  ( x  -  y )  ->  (
z  =  0  <->  (
x  -  y )  =  0 ) )
1110dcbid 839 . . . . 5  |-  ( z  =  ( x  -  y )  ->  (DECID  z  =  0  <-> DECID  ( x  -  y
)  =  0 ) )
12 simpl 109 . . . . 5  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  A. z  e.  RR DECID  z  =  0 )
13 resubcl 8307 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  -  y
)  e.  RR )
1413adantl 277 . . . . 5  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( x  -  y )  e.  RR )
1511, 12, 14rspcdva 2873 . . . 4  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  -> DECID  ( x  -  y
)  =  0 )
16 simprl 529 . . . . . . 7  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  x  e.  RR )
1716recnd 8072 . . . . . 6  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  x  e.  CC )
18 simprr 531 . . . . . . 7  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  y  e.  RR )
1918recnd 8072 . . . . . 6  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  y  e.  CC )
2017, 19subeq0ad 8364 . . . . 5  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( (
x  -  y )  =  0  <->  x  =  y ) )
2120dcbid 839 . . . 4  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  (DECID  ( x  -  y )  =  0  <-> DECID  x  =  y )
)
2215, 21mpbid 147 . . 3  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  -> DECID  x  =  y
)
2322ralrimivva 2579 . 2  |-  ( A. z  e.  RR DECID  z  =  0  ->  A. x  e.  RR  A. y  e.  RR DECID  x  =  y )
249, 23impbii 126 1  |-  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  <->  A. z  e.  RR DECID  z  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2167   A.wral 2475  (class class class)co 5925   RRcr 7895   0cc0 7896    - cmin 8214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-sub 8216  df-neg 8217
This theorem is referenced by:  dcapnconstALT  15793
  Copyright terms: Public domain W3C validator