Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  redc0 Unicode version

Theorem redc0 15996
Description: Two ways to express decidability of real number equality. (Contributed by Jim Kingdon, 23-Jul-2024.)
Assertion
Ref Expression
redc0  |-  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  <->  A. z  e.  RR DECID  z  =  0 )
Distinct variable group:    x, y, z

Proof of Theorem redc0
StepHypRef Expression
1 0re 8072 . . . . 5  |-  0  e.  RR
2 eqeq1 2212 . . . . . . 7  |-  ( x  =  z  ->  (
x  =  y  <->  z  =  y ) )
32dcbid 840 . . . . . 6  |-  ( x  =  z  ->  (DECID  x  =  y  <-> DECID  z  =  y )
)
4 eqeq2 2215 . . . . . . 7  |-  ( y  =  0  ->  (
z  =  y  <->  z  = 
0 ) )
54dcbid 840 . . . . . 6  |-  ( y  =  0  ->  (DECID  z  =  y  <-> DECID  z  =  0 ) )
63, 5rspc2v 2890 . . . . 5  |-  ( ( z  e.  RR  /\  0  e.  RR )  ->  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  -> DECID  z  =  0 ) )
71, 6mpan2 425 . . . 4  |-  ( z  e.  RR  ->  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  -> DECID 
z  =  0 ) )
87impcom 125 . . 3  |-  ( ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  /\  z  e.  RR )  -> DECID 
z  =  0 )
98ralrimiva 2579 . 2  |-  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  ->  A. z  e.  RR DECID  z  =  0 )
10 eqeq1 2212 . . . . . 6  |-  ( z  =  ( x  -  y )  ->  (
z  =  0  <->  (
x  -  y )  =  0 ) )
1110dcbid 840 . . . . 5  |-  ( z  =  ( x  -  y )  ->  (DECID  z  =  0  <-> DECID  ( x  -  y
)  =  0 ) )
12 simpl 109 . . . . 5  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  A. z  e.  RR DECID  z  =  0 )
13 resubcl 8336 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  -  y
)  e.  RR )
1413adantl 277 . . . . 5  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( x  -  y )  e.  RR )
1511, 12, 14rspcdva 2882 . . . 4  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  -> DECID  ( x  -  y
)  =  0 )
16 simprl 529 . . . . . . 7  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  x  e.  RR )
1716recnd 8101 . . . . . 6  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  x  e.  CC )
18 simprr 531 . . . . . . 7  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  y  e.  RR )
1918recnd 8101 . . . . . 6  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  y  e.  CC )
2017, 19subeq0ad 8393 . . . . 5  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( (
x  -  y )  =  0  <->  x  =  y ) )
2120dcbid 840 . . . 4  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  (DECID  ( x  -  y )  =  0  <-> DECID  x  =  y )
)
2215, 21mpbid 147 . . 3  |-  ( ( A. z  e.  RR DECID  z  =  0  /\  (
x  e.  RR  /\  y  e.  RR )
)  -> DECID  x  =  y
)
2322ralrimivva 2588 . 2  |-  ( A. z  e.  RR DECID  z  =  0  ->  A. x  e.  RR  A. y  e.  RR DECID  x  =  y )
249, 23impbii 126 1  |-  ( A. x  e.  RR  A. y  e.  RR DECID  x  =  y  <->  A. z  e.  RR DECID  z  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836    = wceq 1373    e. wcel 2176   A.wral 2484  (class class class)co 5944   RRcr 7924   0cc0 7925    - cmin 8243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-setind 4585  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-sub 8245  df-neg 8246
This theorem is referenced by:  dcapnconstALT  16001
  Copyright terms: Public domain W3C validator