ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undiffi Unicode version

Theorem undiffi 6806
Description: Union of complementary parts into whole. This is a case where we can strengthen undifss 3438 from subset to equality. (Contributed by Jim Kingdon, 2-Mar-2022.)
Assertion
Ref Expression
undiffi  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  A  =  ( B  u.  ( A  \  B ) ) )

Proof of Theorem undiffi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fidceq 6756 . . . 4  |-  ( ( A  e.  Fin  /\  x  e.  A  /\  y  e.  A )  -> DECID  x  =  y )
213expb 1182 . . 3  |-  ( ( A  e.  Fin  /\  ( x  e.  A  /\  y  e.  A
) )  -> DECID  x  =  y
)
32ralrimivva 2512 . 2  |-  ( A  e.  Fin  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
4 undifdc 6805 . 2  |-  ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  B  e. 
Fin  /\  B  C_  A
)  ->  A  =  ( B  u.  ( A  \  B ) ) )
53, 4syl3an1 1249 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  A  =  ( B  u.  ( A  \  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 819    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2414    \ cdif 3063    u. cun 3064    C_ wss 3066   Fincfn 6627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-er 6422  df-en 6628  df-fin 6630
This theorem is referenced by:  unfiin  6807  fihashssdif  10557  fsumlessfi  11222
  Copyright terms: Public domain W3C validator