ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elblps Unicode version

Theorem elblps 14895
Description: Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
elblps  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  ( A  e.  ( P
( ball `  D ) R )  <->  ( A  e.  X  /\  ( P D A )  < 
R ) ) )

Proof of Theorem elblps
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 blvalps 14893 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  ( P ( ball `  D
) R )  =  { x  e.  X  |  ( P D x )  <  R } )
21eleq2d 2275 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  ( A  e.  ( P
( ball `  D ) R )  <->  A  e.  { x  e.  X  | 
( P D x )  <  R }
) )
3 oveq2 5954 . . . 4  |-  ( x  =  A  ->  ( P D x )  =  ( P D A ) )
43breq1d 4055 . . 3  |-  ( x  =  A  ->  (
( P D x )  <  R  <->  ( P D A )  <  R
) )
54elrab 2929 . 2  |-  ( A  e.  { x  e.  X  |  ( P D x )  < 
R }  <->  ( A  e.  X  /\  ( P D A )  < 
R ) )
62, 5bitrdi 196 1  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  ( A  e.  ( P
( ball `  D ) R )  <->  ( A  e.  X  /\  ( P D A )  < 
R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   {crab 2488   class class class wbr 4045   ` cfv 5272  (class class class)co 5946   RR*cxr 8108    < clt 8109  PsMetcpsmet 14330   ballcbl 14333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-map 6739  df-pnf 8111  df-mnf 8112  df-xr 8113  df-psmet 14338  df-bl 14341
This theorem is referenced by:  elbl2ps  14897  xblpnfps  14903  xblss2ps  14909  xblcntrps  14918  blssps  14932
  Copyright terms: Public domain W3C validator