Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lmodstrd | GIF version |
Description: A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Jim Kingdon, 5-Feb-2023.) |
Ref | Expression |
---|---|
lvecfn.w | ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) |
lmodstr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
lmodstr.g | ⊢ (𝜑 → + ∈ 𝑋) |
lmodstr.s | ⊢ (𝜑 → 𝐹 ∈ 𝑌) |
lmodstr.m | ⊢ (𝜑 → · ∈ 𝑍) |
Ref | Expression |
---|---|
lmodstrd | ⊢ (𝜑 → 𝑊 Struct 〈1, 6〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lvecfn.w | . 2 ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) | |
2 | lmodstr.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
3 | lmodstr.g | . . . 4 ⊢ (𝜑 → + ∈ 𝑋) | |
4 | lmodstr.s | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑌) | |
5 | 1nn 8889 | . . . . 5 ⊢ 1 ∈ ℕ | |
6 | basendx 12470 | . . . . 5 ⊢ (Base‘ndx) = 1 | |
7 | 1lt2 9047 | . . . . 5 ⊢ 1 < 2 | |
8 | 2nn 9039 | . . . . 5 ⊢ 2 ∈ ℕ | |
9 | plusgndx 12511 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
10 | 2lt5 9055 | . . . . 5 ⊢ 2 < 5 | |
11 | 5nn 9042 | . . . . 5 ⊢ 5 ∈ ℕ | |
12 | scandx 12545 | . . . . 5 ⊢ (Scalar‘ndx) = 5 | |
13 | 5, 6, 7, 8, 9, 10, 11, 12 | strle3g 12510 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑋 ∧ 𝐹 ∈ 𝑌) → {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} Struct 〈1, 5〉) |
14 | 2, 3, 4, 13 | syl3anc 1233 | . . 3 ⊢ (𝜑 → {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} Struct 〈1, 5〉) |
15 | lmodstr.m | . . . 4 ⊢ (𝜑 → · ∈ 𝑍) | |
16 | 6nn 9043 | . . . . 5 ⊢ 6 ∈ ℕ | |
17 | vscandx 12548 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) = 6 | |
18 | 16, 17 | strle1g 12508 | . . . 4 ⊢ ( · ∈ 𝑍 → {〈( ·𝑠 ‘ndx), · 〉} Struct 〈6, 6〉) |
19 | 15, 18 | syl 14 | . . 3 ⊢ (𝜑 → {〈( ·𝑠 ‘ndx), · 〉} Struct 〈6, 6〉) |
20 | 5lt6 9057 | . . . 4 ⊢ 5 < 6 | |
21 | 20 | a1i 9 | . . 3 ⊢ (𝜑 → 5 < 6) |
22 | 14, 19, 21 | strleund 12506 | . 2 ⊢ (𝜑 → ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) Struct 〈1, 6〉) |
23 | 1, 22 | eqbrtrid 4024 | 1 ⊢ (𝜑 → 𝑊 Struct 〈1, 6〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ∪ cun 3119 {csn 3583 {ctp 3585 〈cop 3586 class class class wbr 3989 ‘cfv 5198 1c1 7775 < clt 7954 2c2 8929 5c5 8932 6c6 8933 Struct cstr 12412 ndxcnx 12413 Basecbs 12416 +gcplusg 12480 Scalarcsca 12483 ·𝑠 cvsca 12484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-tp 3591 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 df-struct 12418 df-ndx 12419 df-slot 12420 df-base 12422 df-plusg 12493 df-sca 12496 df-vsca 12497 |
This theorem is referenced by: lmodbased 12552 lmodplusgd 12553 lmodscad 12554 lmodvscad 12555 |
Copyright terms: Public domain | W3C validator |