ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodstrd GIF version

Theorem lmodstrd 12841
Description: A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
Hypotheses
Ref Expression
lvecfn.w 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})
lmodstr.b (𝜑𝐵𝑉)
lmodstr.g (𝜑+𝑋)
lmodstr.s (𝜑𝐹𝑌)
lmodstr.m (𝜑·𝑍)
Assertion
Ref Expression
lmodstrd (𝜑𝑊 Struct ⟨1, 6⟩)

Proof of Theorem lmodstrd
StepHypRef Expression
1 lvecfn.w . 2 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})
2 lmodstr.b . . . 4 (𝜑𝐵𝑉)
3 lmodstr.g . . . 4 (𝜑+𝑋)
4 lmodstr.s . . . 4 (𝜑𝐹𝑌)
5 1nn 9001 . . . . 5 1 ∈ ℕ
6 basendx 12733 . . . . 5 (Base‘ndx) = 1
7 1lt2 9160 . . . . 5 1 < 2
8 2nn 9152 . . . . 5 2 ∈ ℕ
9 plusgndx 12787 . . . . 5 (+g‘ndx) = 2
10 2lt5 9168 . . . . 5 2 < 5
11 5nn 9155 . . . . 5 5 ∈ ℕ
12 scandx 12828 . . . . 5 (Scalar‘ndx) = 5
135, 6, 7, 8, 9, 10, 11, 12strle3g 12786 . . . 4 ((𝐵𝑉+𝑋𝐹𝑌) → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} Struct ⟨1, 5⟩)
142, 3, 4, 13syl3anc 1249 . . 3 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} Struct ⟨1, 5⟩)
15 lmodstr.m . . . 4 (𝜑·𝑍)
16 6nn 9156 . . . . 5 6 ∈ ℕ
17 vscandx 12834 . . . . 5 ( ·𝑠 ‘ndx) = 6
1816, 17strle1g 12784 . . . 4 ( ·𝑍 → {⟨( ·𝑠 ‘ndx), · ⟩} Struct ⟨6, 6⟩)
1915, 18syl 14 . . 3 (𝜑 → {⟨( ·𝑠 ‘ndx), · ⟩} Struct ⟨6, 6⟩)
20 5lt6 9170 . . . 4 5 < 6
2120a1i 9 . . 3 (𝜑 → 5 < 6)
2214, 19, 21strleund 12781 . 2 (𝜑 → ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}) Struct ⟨1, 6⟩)
231, 22eqbrtrid 4068 1 (𝜑𝑊 Struct ⟨1, 6⟩)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  cun 3155  {csn 3622  {ctp 3624  cop 3625   class class class wbr 4033  cfv 5258  1c1 7880   < clt 8061  2c2 9041  5c5 9044  6c6 9045   Struct cstr 12674  ndxcnx 12675  Basecbs 12678  +gcplusg 12755  Scalarcsca 12758   ·𝑠 cvsca 12759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-struct 12680  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-sca 12771  df-vsca 12772
This theorem is referenced by:  lmodbased  12842  lmodplusgd  12843  lmodscad  12844  lmodvscad  12845
  Copyright terms: Public domain W3C validator