Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodstrd GIF version

Theorem lmodstrd 12151
 Description: A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
Hypotheses
Ref Expression
lvecfn.w 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})
lmodstr.b (𝜑𝐵𝑉)
lmodstr.g (𝜑+𝑋)
lmodstr.s (𝜑𝐹𝑌)
lmodstr.m (𝜑·𝑍)
Assertion
Ref Expression
lmodstrd (𝜑𝑊 Struct ⟨1, 6⟩)

Proof of Theorem lmodstrd
StepHypRef Expression
1 lvecfn.w . 2 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})
2 lmodstr.b . . . 4 (𝜑𝐵𝑉)
3 lmodstr.g . . . 4 (𝜑+𝑋)
4 lmodstr.s . . . 4 (𝜑𝐹𝑌)
5 1nn 8775 . . . . 5 1 ∈ ℕ
6 basendx 12072 . . . . 5 (Base‘ndx) = 1
7 1lt2 8933 . . . . 5 1 < 2
8 2nn 8925 . . . . 5 2 ∈ ℕ
9 plusgndx 12111 . . . . 5 (+g‘ndx) = 2
10 2lt5 8941 . . . . 5 2 < 5
11 5nn 8928 . . . . 5 5 ∈ ℕ
12 scandx 12145 . . . . 5 (Scalar‘ndx) = 5
135, 6, 7, 8, 9, 10, 11, 12strle3g 12110 . . . 4 ((𝐵𝑉+𝑋𝐹𝑌) → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} Struct ⟨1, 5⟩)
142, 3, 4, 13syl3anc 1217 . . 3 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} Struct ⟨1, 5⟩)
15 lmodstr.m . . . 4 (𝜑·𝑍)
16 6nn 8929 . . . . 5 6 ∈ ℕ
17 vscandx 12148 . . . . 5 ( ·𝑠 ‘ndx) = 6
1816, 17strle1g 12108 . . . 4 ( ·𝑍 → {⟨( ·𝑠 ‘ndx), · ⟩} Struct ⟨6, 6⟩)
1915, 18syl 14 . . 3 (𝜑 → {⟨( ·𝑠 ‘ndx), · ⟩} Struct ⟨6, 6⟩)
20 5lt6 8943 . . . 4 5 < 6
2120a1i 9 . . 3 (𝜑 → 5 < 6)
2214, 19, 21strleund 12106 . 2 (𝜑 → ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}) Struct ⟨1, 6⟩)
231, 22eqbrtrid 3972 1 (𝜑𝑊 Struct ⟨1, 6⟩)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1332   ∈ wcel 1481   ∪ cun 3075  {csn 3533  {ctp 3535  ⟨cop 3536   class class class wbr 3938  ‘cfv 5132  1c1 7665   < clt 7844  2c2 8815  5c5 8818  6c6 8819   Struct cstr 12014  ndxcnx 12015  Basecbs 12018  +gcplusg 12080  Scalarcsca 12083   ·𝑠 cvsca 12084 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4055  ax-pow 4107  ax-pr 4140  ax-un 4364  ax-setind 4461  ax-cnex 7755  ax-resscn 7756  ax-1cn 7757  ax-1re 7758  ax-icn 7759  ax-addcl 7760  ax-addrcl 7761  ax-mulcl 7762  ax-addcom 7764  ax-addass 7766  ax-distr 7768  ax-i2m1 7769  ax-0lt1 7770  ax-0id 7772  ax-rnegex 7773  ax-cnre 7775  ax-pre-ltirr 7776  ax-pre-ltwlin 7777  ax-pre-lttrn 7778  ax-pre-apti 7779  ax-pre-ltadd 7780 This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2692  df-sbc 2915  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-nul 3370  df-pw 3518  df-sn 3539  df-pr 3540  df-tp 3541  df-op 3542  df-uni 3746  df-int 3781  df-br 3939  df-opab 3999  df-mpt 4000  df-id 4224  df-xp 4554  df-rel 4555  df-cnv 4556  df-co 4557  df-dm 4558  df-rn 4559  df-res 4560  df-ima 4561  df-iota 5097  df-fun 5134  df-fn 5135  df-f 5136  df-fv 5140  df-riota 5739  df-ov 5786  df-oprab 5787  df-mpo 5788  df-pnf 7846  df-mnf 7847  df-xr 7848  df-ltxr 7849  df-le 7850  df-sub 7979  df-neg 7980  df-inn 8765  df-2 8823  df-3 8824  df-4 8825  df-5 8826  df-6 8827  df-n0 9022  df-z 9099  df-uz 9371  df-fz 9842  df-struct 12020  df-ndx 12021  df-slot 12022  df-base 12024  df-plusg 12093  df-sca 12096  df-vsca 12097 This theorem is referenced by:  lmodbased  12152  lmodplusgd  12153  lmodscad  12154  lmodvscad  12155
 Copyright terms: Public domain W3C validator