ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodstrd GIF version

Theorem lmodstrd 11935
Description: A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
Hypotheses
Ref Expression
lvecfn.w 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})
lmodstr.b (𝜑𝐵𝑉)
lmodstr.g (𝜑+𝑋)
lmodstr.s (𝜑𝐹𝑌)
lmodstr.m (𝜑·𝑍)
Assertion
Ref Expression
lmodstrd (𝜑𝑊 Struct ⟨1, 6⟩)

Proof of Theorem lmodstrd
StepHypRef Expression
1 lvecfn.w . 2 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})
2 lmodstr.b . . . 4 (𝜑𝐵𝑉)
3 lmodstr.g . . . 4 (𝜑+𝑋)
4 lmodstr.s . . . 4 (𝜑𝐹𝑌)
5 1nn 8641 . . . . 5 1 ∈ ℕ
6 basendx 11856 . . . . 5 (Base‘ndx) = 1
7 1lt2 8793 . . . . 5 1 < 2
8 2nn 8785 . . . . 5 2 ∈ ℕ
9 plusgndx 11895 . . . . 5 (+g‘ndx) = 2
10 2lt5 8801 . . . . 5 2 < 5
11 5nn 8788 . . . . 5 5 ∈ ℕ
12 scandx 11929 . . . . 5 (Scalar‘ndx) = 5
135, 6, 7, 8, 9, 10, 11, 12strle3g 11894 . . . 4 ((𝐵𝑉+𝑋𝐹𝑌) → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} Struct ⟨1, 5⟩)
142, 3, 4, 13syl3anc 1199 . . 3 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} Struct ⟨1, 5⟩)
15 lmodstr.m . . . 4 (𝜑·𝑍)
16 6nn 8789 . . . . 5 6 ∈ ℕ
17 vscandx 11932 . . . . 5 ( ·𝑠 ‘ndx) = 6
1816, 17strle1g 11892 . . . 4 ( ·𝑍 → {⟨( ·𝑠 ‘ndx), · ⟩} Struct ⟨6, 6⟩)
1915, 18syl 14 . . 3 (𝜑 → {⟨( ·𝑠 ‘ndx), · ⟩} Struct ⟨6, 6⟩)
20 5lt6 8803 . . . 4 5 < 6
2120a1i 9 . . 3 (𝜑 → 5 < 6)
2214, 19, 21strleund 11890 . 2 (𝜑 → ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}) Struct ⟨1, 6⟩)
231, 22eqbrtrid 3928 1 (𝜑𝑊 Struct ⟨1, 6⟩)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1314  wcel 1463  cun 3035  {csn 3493  {ctp 3495  cop 3496   class class class wbr 3895  cfv 5081  1c1 7548   < clt 7724  2c2 8681  5c5 8684  6c6 8685   Struct cstr 11798  ndxcnx 11799  Basecbs 11802  +gcplusg 11864  Scalarcsca 11867   ·𝑠 cvsca 11868
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-addcom 7645  ax-addass 7647  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-0id 7653  ax-rnegex 7654  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-apti 7660  ax-pre-ltadd 7661
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-tp 3501  df-op 3502  df-uni 3703  df-int 3738  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-inn 8631  df-2 8689  df-3 8690  df-4 8691  df-5 8692  df-6 8693  df-n0 8882  df-z 8959  df-uz 9229  df-fz 9684  df-struct 11804  df-ndx 11805  df-slot 11806  df-base 11808  df-plusg 11877  df-sca 11880  df-vsca 11881
This theorem is referenced by:  lmodbased  11936  lmodplusgd  11937  lmodscad  11938  lmodvscad  11939
  Copyright terms: Public domain W3C validator