![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lmodstrd | GIF version |
Description: A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Jim Kingdon, 5-Feb-2023.) |
Ref | Expression |
---|---|
lvecfn.w | ⊢ 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}) |
lmodstr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
lmodstr.g | ⊢ (𝜑 → + ∈ 𝑋) |
lmodstr.s | ⊢ (𝜑 → 𝐹 ∈ 𝑌) |
lmodstr.m | ⊢ (𝜑 → · ∈ 𝑍) |
Ref | Expression |
---|---|
lmodstrd | ⊢ (𝜑 → 𝑊 Struct ⟨1, 6⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lvecfn.w | . 2 ⊢ 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}) | |
2 | lmodstr.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
3 | lmodstr.g | . . . 4 ⊢ (𝜑 → + ∈ 𝑋) | |
4 | lmodstr.s | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑌) | |
5 | 1nn 8932 | . . . . 5 ⊢ 1 ∈ ℕ | |
6 | basendx 12519 | . . . . 5 ⊢ (Base‘ndx) = 1 | |
7 | 1lt2 9090 | . . . . 5 ⊢ 1 < 2 | |
8 | 2nn 9082 | . . . . 5 ⊢ 2 ∈ ℕ | |
9 | plusgndx 12570 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
10 | 2lt5 9098 | . . . . 5 ⊢ 2 < 5 | |
11 | 5nn 9085 | . . . . 5 ⊢ 5 ∈ ℕ | |
12 | scandx 12611 | . . . . 5 ⊢ (Scalar‘ndx) = 5 | |
13 | 5, 6, 7, 8, 9, 10, 11, 12 | strle3g 12569 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑋 ∧ 𝐹 ∈ 𝑌) → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} Struct ⟨1, 5⟩) |
14 | 2, 3, 4, 13 | syl3anc 1238 | . . 3 ⊢ (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} Struct ⟨1, 5⟩) |
15 | lmodstr.m | . . . 4 ⊢ (𝜑 → · ∈ 𝑍) | |
16 | 6nn 9086 | . . . . 5 ⊢ 6 ∈ ℕ | |
17 | vscandx 12617 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) = 6 | |
18 | 16, 17 | strle1g 12567 | . . . 4 ⊢ ( · ∈ 𝑍 → {⟨( ·𝑠 ‘ndx), · ⟩} Struct ⟨6, 6⟩) |
19 | 15, 18 | syl 14 | . . 3 ⊢ (𝜑 → {⟨( ·𝑠 ‘ndx), · ⟩} Struct ⟨6, 6⟩) |
20 | 5lt6 9100 | . . . 4 ⊢ 5 < 6 | |
21 | 20 | a1i 9 | . . 3 ⊢ (𝜑 → 5 < 6) |
22 | 14, 19, 21 | strleund 12564 | . 2 ⊢ (𝜑 → ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}) Struct ⟨1, 6⟩) |
23 | 1, 22 | eqbrtrid 4040 | 1 ⊢ (𝜑 → 𝑊 Struct ⟨1, 6⟩) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 ∪ cun 3129 {csn 3594 {ctp 3596 ⟨cop 3597 class class class wbr 4005 ‘cfv 5218 1c1 7814 < clt 7994 2c2 8972 5c5 8975 6c6 8976 Struct cstr 12460 ndxcnx 12461 Basecbs 12464 +gcplusg 12538 Scalarcsca 12541 ·𝑠 cvsca 12542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-tp 3602 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-5 8983 df-6 8984 df-n0 9179 df-z 9256 df-uz 9531 df-fz 10011 df-struct 12466 df-ndx 12467 df-slot 12468 df-base 12470 df-plusg 12551 df-sca 12554 df-vsca 12555 |
This theorem is referenced by: lmodbased 12625 lmodplusgd 12626 lmodscad 12627 lmodvscad 12628 |
Copyright terms: Public domain | W3C validator |