![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lmodstrd | GIF version |
Description: A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Jim Kingdon, 5-Feb-2023.) |
Ref | Expression |
---|---|
lvecfn.w | ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) |
lmodstr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
lmodstr.g | ⊢ (𝜑 → + ∈ 𝑋) |
lmodstr.s | ⊢ (𝜑 → 𝐹 ∈ 𝑌) |
lmodstr.m | ⊢ (𝜑 → · ∈ 𝑍) |
Ref | Expression |
---|---|
lmodstrd | ⊢ (𝜑 → 𝑊 Struct 〈1, 6〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lvecfn.w | . 2 ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) | |
2 | lmodstr.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
3 | lmodstr.g | . . . 4 ⊢ (𝜑 → + ∈ 𝑋) | |
4 | lmodstr.s | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑌) | |
5 | 1nn 8641 | . . . . 5 ⊢ 1 ∈ ℕ | |
6 | basendx 11856 | . . . . 5 ⊢ (Base‘ndx) = 1 | |
7 | 1lt2 8793 | . . . . 5 ⊢ 1 < 2 | |
8 | 2nn 8785 | . . . . 5 ⊢ 2 ∈ ℕ | |
9 | plusgndx 11895 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
10 | 2lt5 8801 | . . . . 5 ⊢ 2 < 5 | |
11 | 5nn 8788 | . . . . 5 ⊢ 5 ∈ ℕ | |
12 | scandx 11929 | . . . . 5 ⊢ (Scalar‘ndx) = 5 | |
13 | 5, 6, 7, 8, 9, 10, 11, 12 | strle3g 11894 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑋 ∧ 𝐹 ∈ 𝑌) → {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} Struct 〈1, 5〉) |
14 | 2, 3, 4, 13 | syl3anc 1199 | . . 3 ⊢ (𝜑 → {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} Struct 〈1, 5〉) |
15 | lmodstr.m | . . . 4 ⊢ (𝜑 → · ∈ 𝑍) | |
16 | 6nn 8789 | . . . . 5 ⊢ 6 ∈ ℕ | |
17 | vscandx 11932 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) = 6 | |
18 | 16, 17 | strle1g 11892 | . . . 4 ⊢ ( · ∈ 𝑍 → {〈( ·𝑠 ‘ndx), · 〉} Struct 〈6, 6〉) |
19 | 15, 18 | syl 14 | . . 3 ⊢ (𝜑 → {〈( ·𝑠 ‘ndx), · 〉} Struct 〈6, 6〉) |
20 | 5lt6 8803 | . . . 4 ⊢ 5 < 6 | |
21 | 20 | a1i 9 | . . 3 ⊢ (𝜑 → 5 < 6) |
22 | 14, 19, 21 | strleund 11890 | . 2 ⊢ (𝜑 → ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) Struct 〈1, 6〉) |
23 | 1, 22 | eqbrtrid 3928 | 1 ⊢ (𝜑 → 𝑊 Struct 〈1, 6〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1314 ∈ wcel 1463 ∪ cun 3035 {csn 3493 {ctp 3495 〈cop 3496 class class class wbr 3895 ‘cfv 5081 1c1 7548 < clt 7724 2c2 8681 5c5 8684 6c6 8685 Struct cstr 11798 ndxcnx 11799 Basecbs 11802 +gcplusg 11864 Scalarcsca 11867 ·𝑠 cvsca 11868 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-cnex 7636 ax-resscn 7637 ax-1cn 7638 ax-1re 7639 ax-icn 7640 ax-addcl 7641 ax-addrcl 7642 ax-mulcl 7643 ax-addcom 7645 ax-addass 7647 ax-distr 7649 ax-i2m1 7650 ax-0lt1 7651 ax-0id 7653 ax-rnegex 7654 ax-cnre 7656 ax-pre-ltirr 7657 ax-pre-ltwlin 7658 ax-pre-lttrn 7659 ax-pre-apti 7660 ax-pre-ltadd 7661 |
This theorem depends on definitions: df-bi 116 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-nel 2378 df-ral 2395 df-rex 2396 df-reu 2397 df-rab 2399 df-v 2659 df-sbc 2879 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-nul 3330 df-pw 3478 df-sn 3499 df-pr 3500 df-tp 3501 df-op 3502 df-uni 3703 df-int 3738 df-br 3896 df-opab 3950 df-mpt 3951 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-fv 5089 df-riota 5684 df-ov 5731 df-oprab 5732 df-mpo 5733 df-pnf 7726 df-mnf 7727 df-xr 7728 df-ltxr 7729 df-le 7730 df-sub 7858 df-neg 7859 df-inn 8631 df-2 8689 df-3 8690 df-4 8691 df-5 8692 df-6 8693 df-n0 8882 df-z 8959 df-uz 9229 df-fz 9684 df-struct 11804 df-ndx 11805 df-slot 11806 df-base 11808 df-plusg 11877 df-sca 11880 df-vsca 11881 |
This theorem is referenced by: lmodbased 11936 lmodplusgd 11937 lmodscad 11938 lmodvscad 11939 |
Copyright terms: Public domain | W3C validator |