| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > scaslid | GIF version | ||
| Description: Slot property of Scalar. (Contributed by Jim Kingdon, 5-Feb-2023.) |
| Ref | Expression |
|---|---|
| scaslid | ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sca 12969 | . 2 ⊢ Scalar = Slot 5 | |
| 2 | 5nn 9208 | . 2 ⊢ 5 ∈ ℕ | |
| 3 | 1, 2 | ndxslid 12901 | 1 ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 ‘cfv 5276 ℕcn 9043 5c5 9097 ndxcnx 12873 Slot cslot 12875 Scalarcsca 12956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-iota 5237 df-fun 5278 df-fv 5284 df-ov 5954 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-ndx 12879 df-slot 12880 df-sca 12969 |
| This theorem is referenced by: lmodscad 13043 ipsscad 13056 ressscag 13059 prdsex 13145 prdsval 13149 prdssca 13151 pwsval 13167 pwsbas 13168 pwsplusgval 13171 pwsmulrval 13172 xpsval 13228 pwsmnd 13326 pws0g 13327 pwsgrp 13487 pwsinvg 13488 mgpscag 13733 islmod 14097 scaffvalg 14112 rmodislmod 14157 sraval 14243 sralemg 14244 srascag 14248 sravscag 14249 sraipg 14250 sraex 14252 zlmval 14433 zlmlemg 14434 zlmsca 14438 zlmvscag 14439 psrval 14472 fnpsr 14473 |
| Copyright terms: Public domain | W3C validator |