| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > scaslid | GIF version | ||
| Description: Slot property of Scalar. (Contributed by Jim Kingdon, 5-Feb-2023.) |
| Ref | Expression |
|---|---|
| scaslid | ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sca 13092 | . 2 ⊢ Scalar = Slot 5 | |
| 2 | 5nn 9243 | . 2 ⊢ 5 ∈ ℕ | |
| 3 | 1, 2 | ndxslid 13023 | 1 ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1375 ∈ wcel 2180 ‘cfv 5294 ℕcn 9078 5c5 9132 ndxcnx 12995 Slot cslot 12997 Scalarcsca 13079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fv 5302 df-ov 5977 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-ndx 13001 df-slot 13002 df-sca 13092 |
| This theorem is referenced by: lmodscad 13166 ipsscad 13179 ressscag 13182 prdsex 13268 prdsval 13272 prdssca 13274 pwsval 13290 pwsbas 13291 pwsplusgval 13294 pwsmulrval 13295 xpsval 13351 pwsmnd 13449 pws0g 13450 pwsgrp 13610 pwsinvg 13611 mgpscag 13856 islmod 14220 scaffvalg 14235 rmodislmod 14280 sraval 14366 sralemg 14367 srascag 14371 sravscag 14372 sraipg 14373 sraex 14375 zlmval 14556 zlmlemg 14557 zlmsca 14561 zlmvscag 14562 psrval 14595 fnpsr 14596 |
| Copyright terms: Public domain | W3C validator |