ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scaslid GIF version

Theorem scaslid 13194
Description: Slot property of Scalar. (Contributed by Jim Kingdon, 5-Feb-2023.)
Assertion
Ref Expression
scaslid (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)

Proof of Theorem scaslid
StepHypRef Expression
1 df-sca 13134 . 2 Scalar = Slot 5
2 5nn 9283 . 2 5 ∈ ℕ
31, 2ndxslid 13065 1 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wcel 2200  cfv 5318  cn 9118  5c5 9172  ndxcnx 13037  Slot cslot 13039  Scalarcsca 13121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6010  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-ndx 13043  df-slot 13044  df-sca 13134
This theorem is referenced by:  lmodscad  13208  ipsscad  13221  ressscag  13224  prdsex  13310  prdsval  13314  prdssca  13316  pwsval  13332  pwsbas  13333  pwsplusgval  13336  pwsmulrval  13337  xpsval  13393  pwsmnd  13491  pws0g  13492  pwsgrp  13652  pwsinvg  13653  mgpscag  13898  islmod  14263  scaffvalg  14278  rmodislmod  14323  sraval  14409  sralemg  14410  srascag  14414  sravscag  14415  sraipg  14416  sraex  14418  zlmval  14599  zlmlemg  14600  zlmsca  14604  zlmvscag  14605  psrval  14638  fnpsr  14639
  Copyright terms: Public domain W3C validator