![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > scaslid | GIF version |
Description: Slot property of Scalar. (Contributed by Jim Kingdon, 5-Feb-2023.) |
Ref | Expression |
---|---|
scaslid | ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sca 12714 | . 2 ⊢ Scalar = Slot 5 | |
2 | 5nn 9149 | . 2 ⊢ 5 ∈ ℕ | |
3 | 1, 2 | ndxslid 12646 | 1 ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2164 ‘cfv 5255 ℕcn 8984 5c5 9038 ndxcnx 12618 Slot cslot 12620 Scalarcsca 12701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fv 5263 df-ov 5922 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-ndx 12624 df-slot 12625 df-sca 12714 |
This theorem is referenced by: lmodscad 12787 ipsscad 12800 ressscag 12803 prdsex 12883 xpsval 12938 mgpscag 13426 islmod 13790 scaffvalg 13805 rmodislmod 13850 sraval 13936 sralemg 13937 srascag 13941 sravscag 13942 sraipg 13943 sraex 13945 zlmval 14126 zlmlemg 14127 zlmsca 14131 zlmvscag 14132 psrval 14163 fnpsr 14164 |
Copyright terms: Public domain | W3C validator |