ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scaslid GIF version

Theorem scaslid 12773
Description: Slot property of Scalar. (Contributed by Jim Kingdon, 5-Feb-2023.)
Assertion
Ref Expression
scaslid (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)

Proof of Theorem scaslid
StepHypRef Expression
1 df-sca 12714 . 2 Scalar = Slot 5
2 5nn 9149 . 2 5 ∈ ℕ
31, 2ndxslid 12646 1 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2164  cfv 5255  cn 8984  5c5 9038  ndxcnx 12618  Slot cslot 12620  Scalarcsca 12701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fv 5263  df-ov 5922  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-ndx 12624  df-slot 12625  df-sca 12714
This theorem is referenced by:  lmodscad  12787  ipsscad  12800  ressscag  12803  prdsex  12883  xpsval  12938  mgpscag  13426  islmod  13790  scaffvalg  13805  rmodislmod  13850  sraval  13936  sralemg  13937  srascag  13941  sravscag  13942  sraipg  13943  sraex  13945  zlmval  14126  zlmlemg  14127  zlmsca  14131  zlmvscag  14132  psrval  14163  fnpsr  14164
  Copyright terms: Public domain W3C validator