| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > scaslid | GIF version | ||
| Description: Slot property of Scalar. (Contributed by Jim Kingdon, 5-Feb-2023.) |
| Ref | Expression |
|---|---|
| scaslid | ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sca 12784 | . 2 ⊢ Scalar = Slot 5 | |
| 2 | 5nn 9160 | . 2 ⊢ 5 ∈ ℕ | |
| 3 | 1, 2 | ndxslid 12716 | 1 ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2167 ‘cfv 5259 ℕcn 8995 5c5 9049 ndxcnx 12688 Slot cslot 12690 Scalarcsca 12771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7975 ax-resscn 7976 ax-1re 7978 ax-addrcl 7981 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-inn 8996 df-2 9054 df-3 9055 df-4 9056 df-5 9057 df-ndx 12694 df-slot 12695 df-sca 12784 |
| This theorem is referenced by: lmodscad 12857 ipsscad 12870 ressscag 12873 prdsex 12959 prdsval 12963 prdssca 12965 pwsval 12981 pwsbas 12982 pwsplusgval 12985 pwsmulrval 12986 xpsval 13042 mgpscag 13530 islmod 13894 scaffvalg 13909 rmodislmod 13954 sraval 14040 sralemg 14041 srascag 14045 sravscag 14046 sraipg 14047 sraex 14049 zlmval 14230 zlmlemg 14231 zlmsca 14235 zlmvscag 14236 psrval 14267 fnpsr 14268 |
| Copyright terms: Public domain | W3C validator |