![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ccoslid | GIF version |
Description: Slot property of comp. (Contributed by Jim Kingdon, 20-Mar-2025.) |
Ref | Expression |
---|---|
ccoslid | ⊢ (comp = Slot (comp‘ndx) ∧ (comp‘ndx) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cco 12579 | . 2 ⊢ comp = Slot ;15 | |
2 | 1nn0 9209 | . . 3 ⊢ 1 ∈ ℕ0 | |
3 | 5nn 9100 | . . 3 ⊢ 5 ∈ ℕ | |
4 | 2, 3 | decnncl 9420 | . 2 ⊢ ;15 ∈ ℕ |
5 | 1, 4 | ndxslid 12504 | 1 ⊢ (comp = Slot (comp‘ndx) ∧ (comp‘ndx) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1363 ∈ wcel 2159 ‘cfv 5230 1c1 7829 ℕcn 8936 5c5 8990 ;cdc 9401 ndxcnx 12476 Slot cslot 12478 compcco 12566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-sep 4135 ax-pow 4188 ax-pr 4223 ax-un 4447 ax-setind 4550 ax-cnex 7919 ax-resscn 7920 ax-1cn 7921 ax-1re 7922 ax-icn 7923 ax-addcl 7924 ax-addrcl 7925 ax-mulcl 7926 ax-addcom 7928 ax-mulcom 7929 ax-addass 7930 ax-mulass 7931 ax-distr 7932 ax-i2m1 7933 ax-1rid 7935 ax-0id 7936 ax-rnegex 7937 ax-cnre 7939 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ne 2360 df-ral 2472 df-rex 2473 df-reu 2474 df-rab 2476 df-v 2753 df-sbc 2977 df-dif 3145 df-un 3147 df-in 3149 df-ss 3156 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-int 3859 df-br 4018 df-opab 4079 df-mpt 4080 df-id 4307 df-xp 4646 df-rel 4647 df-cnv 4648 df-co 4649 df-dm 4650 df-rn 4651 df-res 4652 df-iota 5192 df-fun 5232 df-fv 5238 df-riota 5846 df-ov 5893 df-oprab 5894 df-mpo 5895 df-sub 8147 df-inn 8937 df-2 8995 df-3 8996 df-4 8997 df-5 8998 df-6 8999 df-7 9000 df-8 9001 df-9 9002 df-n0 9194 df-dec 9402 df-ndx 12482 df-slot 12483 df-cco 12579 |
This theorem is referenced by: prdsex 12739 |
Copyright terms: Public domain | W3C validator |