Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ipsstrd | GIF version |
Description: A constructed inner product space is a structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.) |
Ref | Expression |
---|---|
ipspart.a | ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) |
ipsstrd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
ipsstrd.p | ⊢ (𝜑 → + ∈ 𝑊) |
ipsstrd.r | ⊢ (𝜑 → × ∈ 𝑋) |
ipsstrd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑌) |
ipsstrd.x | ⊢ (𝜑 → · ∈ 𝑄) |
ipsstrd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑍) |
Ref | Expression |
---|---|
ipsstrd | ⊢ (𝜑 → 𝐴 Struct 〈1, 8〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipspart.a | . 2 ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) | |
2 | ipsstrd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
3 | ipsstrd.p | . . . 4 ⊢ (𝜑 → + ∈ 𝑊) | |
4 | ipsstrd.r | . . . 4 ⊢ (𝜑 → × ∈ 𝑋) | |
5 | eqid 2165 | . . . . 5 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} | |
6 | 5 | rngstrg 12510 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ × ∈ 𝑋) → {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} Struct 〈1, 3〉) |
7 | 2, 3, 4, 6 | syl3anc 1228 | . . 3 ⊢ (𝜑 → {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} Struct 〈1, 3〉) |
8 | ipsstrd.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑌) | |
9 | ipsstrd.x | . . . 4 ⊢ (𝜑 → · ∈ 𝑄) | |
10 | ipsstrd.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑍) | |
11 | 5nn 9021 | . . . . 5 ⊢ 5 ∈ ℕ | |
12 | scandx 12522 | . . . . 5 ⊢ (Scalar‘ndx) = 5 | |
13 | 5lt6 9036 | . . . . 5 ⊢ 5 < 6 | |
14 | 6nn 9022 | . . . . 5 ⊢ 6 ∈ ℕ | |
15 | vscandx 12525 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) = 6 | |
16 | 6lt8 9048 | . . . . 5 ⊢ 6 < 8 | |
17 | 8nn 9024 | . . . . 5 ⊢ 8 ∈ ℕ | |
18 | ipndx 12533 | . . . . 5 ⊢ (·𝑖‘ndx) = 8 | |
19 | 11, 12, 13, 14, 15, 16, 17, 18 | strle3g 12487 | . . . 4 ⊢ ((𝑆 ∈ 𝑌 ∧ · ∈ 𝑄 ∧ 𝐼 ∈ 𝑍) → {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉} Struct 〈5, 8〉) |
20 | 8, 9, 10, 19 | syl3anc 1228 | . . 3 ⊢ (𝜑 → {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉} Struct 〈5, 8〉) |
21 | 3lt5 9033 | . . . 4 ⊢ 3 < 5 | |
22 | 21 | a1i 9 | . . 3 ⊢ (𝜑 → 3 < 5) |
23 | 7, 20, 22 | strleund 12483 | . 2 ⊢ (𝜑 → ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) Struct 〈1, 8〉) |
24 | 1, 23 | eqbrtrid 4017 | 1 ⊢ (𝜑 → 𝐴 Struct 〈1, 8〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 ∪ cun 3114 {ctp 3578 〈cop 3579 class class class wbr 3982 ‘cfv 5188 1c1 7754 < clt 7933 3c3 8909 5c5 8911 6c6 8912 8c8 8914 Struct cstr 12390 ndxcnx 12391 Basecbs 12394 +gcplusg 12457 .rcmulr 12458 Scalarcsca 12460 ·𝑠 cvsca 12461 ·𝑖cip 12462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-tp 3584 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 df-struct 12396 df-ndx 12397 df-slot 12398 df-base 12400 df-plusg 12470 df-mulr 12471 df-sca 12473 df-vsca 12474 df-ip 12475 |
This theorem is referenced by: ipsbased 12537 ipsaddgd 12538 ipsmulrd 12539 ipsscad 12540 ipsvscad 12541 ipsipd 12542 |
Copyright terms: Public domain | W3C validator |