Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ipsstrd | GIF version |
Description: A constructed inner product space is a structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.) |
Ref | Expression |
---|---|
ipspart.a | ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) |
ipsstrd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
ipsstrd.p | ⊢ (𝜑 → + ∈ 𝑊) |
ipsstrd.r | ⊢ (𝜑 → × ∈ 𝑋) |
ipsstrd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑌) |
ipsstrd.x | ⊢ (𝜑 → · ∈ 𝑄) |
ipsstrd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑍) |
Ref | Expression |
---|---|
ipsstrd | ⊢ (𝜑 → 𝐴 Struct 〈1, 8〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipspart.a | . 2 ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) | |
2 | ipsstrd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
3 | ipsstrd.p | . . . 4 ⊢ (𝜑 → + ∈ 𝑊) | |
4 | ipsstrd.r | . . . 4 ⊢ (𝜑 → × ∈ 𝑋) | |
5 | eqid 2175 | . . . . 5 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} | |
6 | 5 | rngstrg 12544 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ × ∈ 𝑋) → {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} Struct 〈1, 3〉) |
7 | 2, 3, 4, 6 | syl3anc 1238 | . . 3 ⊢ (𝜑 → {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} Struct 〈1, 3〉) |
8 | ipsstrd.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑌) | |
9 | ipsstrd.x | . . . 4 ⊢ (𝜑 → · ∈ 𝑄) | |
10 | ipsstrd.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑍) | |
11 | 5nn 9054 | . . . . 5 ⊢ 5 ∈ ℕ | |
12 | scandx 12556 | . . . . 5 ⊢ (Scalar‘ndx) = 5 | |
13 | 5lt6 9069 | . . . . 5 ⊢ 5 < 6 | |
14 | 6nn 9055 | . . . . 5 ⊢ 6 ∈ ℕ | |
15 | vscandx 12562 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) = 6 | |
16 | 6lt8 9081 | . . . . 5 ⊢ 6 < 8 | |
17 | 8nn 9057 | . . . . 5 ⊢ 8 ∈ ℕ | |
18 | ipndx 12570 | . . . . 5 ⊢ (·𝑖‘ndx) = 8 | |
19 | 11, 12, 13, 14, 15, 16, 17, 18 | strle3g 12521 | . . . 4 ⊢ ((𝑆 ∈ 𝑌 ∧ · ∈ 𝑄 ∧ 𝐼 ∈ 𝑍) → {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉} Struct 〈5, 8〉) |
20 | 8, 9, 10, 19 | syl3anc 1238 | . . 3 ⊢ (𝜑 → {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉} Struct 〈5, 8〉) |
21 | 3lt5 9066 | . . . 4 ⊢ 3 < 5 | |
22 | 21 | a1i 9 | . . 3 ⊢ (𝜑 → 3 < 5) |
23 | 7, 20, 22 | strleund 12517 | . 2 ⊢ (𝜑 → ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) Struct 〈1, 8〉) |
24 | 1, 23 | eqbrtrid 4033 | 1 ⊢ (𝜑 → 𝐴 Struct 〈1, 8〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 ∪ cun 3125 {ctp 3591 〈cop 3592 class class class wbr 3998 ‘cfv 5208 1c1 7787 < clt 7966 3c3 8942 5c5 8944 6c6 8945 8c8 8947 Struct cstr 12423 ndxcnx 12424 Basecbs 12427 +gcplusg 12491 .rcmulr 12492 Scalarcsca 12494 ·𝑠 cvsca 12495 ·𝑖cip 12496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-tp 3597 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-inn 8891 df-2 8949 df-3 8950 df-4 8951 df-5 8952 df-6 8953 df-7 8954 df-8 8955 df-n0 9148 df-z 9225 df-uz 9500 df-fz 9978 df-struct 12429 df-ndx 12430 df-slot 12431 df-base 12433 df-plusg 12504 df-mulr 12505 df-sca 12507 df-vsca 12508 df-ip 12509 |
This theorem is referenced by: ipsbased 12574 ipsaddgd 12575 ipsmulrd 12576 ipsscad 12577 ipsvscad 12578 ipsipd 12579 |
Copyright terms: Public domain | W3C validator |