| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ipsstrd | GIF version | ||
| Description: A constructed inner product space is a structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.) |
| Ref | Expression |
|---|---|
| ipspart.a | ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) |
| ipsstrd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| ipsstrd.p | ⊢ (𝜑 → + ∈ 𝑊) |
| ipsstrd.r | ⊢ (𝜑 → × ∈ 𝑋) |
| ipsstrd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑌) |
| ipsstrd.x | ⊢ (𝜑 → · ∈ 𝑄) |
| ipsstrd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑍) |
| Ref | Expression |
|---|---|
| ipsstrd | ⊢ (𝜑 → 𝐴 Struct 〈1, 8〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipspart.a | . 2 ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) | |
| 2 | ipsstrd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 3 | ipsstrd.p | . . . 4 ⊢ (𝜑 → + ∈ 𝑊) | |
| 4 | ipsstrd.r | . . . 4 ⊢ (𝜑 → × ∈ 𝑋) | |
| 5 | eqid 2206 | . . . . 5 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} | |
| 6 | 5 | rngstrg 13017 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ × ∈ 𝑋) → {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} Struct 〈1, 3〉) |
| 7 | 2, 3, 4, 6 | syl3anc 1250 | . . 3 ⊢ (𝜑 → {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} Struct 〈1, 3〉) |
| 8 | ipsstrd.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑌) | |
| 9 | ipsstrd.x | . . . 4 ⊢ (𝜑 → · ∈ 𝑄) | |
| 10 | ipsstrd.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑍) | |
| 11 | 5nn 9214 | . . . . 5 ⊢ 5 ∈ ℕ | |
| 12 | scandx 13033 | . . . . 5 ⊢ (Scalar‘ndx) = 5 | |
| 13 | 5lt6 9229 | . . . . 5 ⊢ 5 < 6 | |
| 14 | 6nn 9215 | . . . . 5 ⊢ 6 ∈ ℕ | |
| 15 | vscandx 13039 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) = 6 | |
| 16 | 6lt8 9241 | . . . . 5 ⊢ 6 < 8 | |
| 17 | 8nn 9217 | . . . . 5 ⊢ 8 ∈ ℕ | |
| 18 | ipndx 13051 | . . . . 5 ⊢ (·𝑖‘ndx) = 8 | |
| 19 | 11, 12, 13, 14, 15, 16, 17, 18 | strle3g 12990 | . . . 4 ⊢ ((𝑆 ∈ 𝑌 ∧ · ∈ 𝑄 ∧ 𝐼 ∈ 𝑍) → {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉} Struct 〈5, 8〉) |
| 20 | 8, 9, 10, 19 | syl3anc 1250 | . . 3 ⊢ (𝜑 → {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉} Struct 〈5, 8〉) |
| 21 | 3lt5 9226 | . . . 4 ⊢ 3 < 5 | |
| 22 | 21 | a1i 9 | . . 3 ⊢ (𝜑 → 3 < 5) |
| 23 | 7, 20, 22 | strleund 12985 | . 2 ⊢ (𝜑 → ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) Struct 〈1, 8〉) |
| 24 | 1, 23 | eqbrtrid 4083 | 1 ⊢ (𝜑 → 𝐴 Struct 〈1, 8〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ∪ cun 3166 {ctp 3637 〈cop 3638 class class class wbr 4048 ‘cfv 5277 1c1 7939 < clt 8120 3c3 9101 5c5 9103 6c6 9104 8c8 9106 Struct cstr 12878 ndxcnx 12879 Basecbs 12882 +gcplusg 12959 .rcmulr 12960 Scalarcsca 12962 ·𝑠 cvsca 12963 ·𝑖cip 12964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-0id 8046 ax-rnegex 8047 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-tp 3643 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-5 9111 df-6 9112 df-7 9113 df-8 9114 df-n0 9309 df-z 9386 df-uz 9662 df-fz 10144 df-struct 12884 df-ndx 12885 df-slot 12886 df-base 12888 df-plusg 12972 df-mulr 12973 df-sca 12975 df-vsca 12976 df-ip 12977 |
| This theorem is referenced by: ipsbased 13059 ipsaddgd 13060 ipsmulrd 13061 ipsscad 13062 ipsvscad 13063 ipsipd 13064 imasvalstrd 13152 |
| Copyright terms: Public domain | W3C validator |