![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ipsstrd | GIF version |
Description: A constructed inner product space is a structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.) |
Ref | Expression |
---|---|
ipspart.a | ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) |
ipsstrd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
ipsstrd.p | ⊢ (𝜑 → + ∈ 𝑊) |
ipsstrd.r | ⊢ (𝜑 → × ∈ 𝑋) |
ipsstrd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑌) |
ipsstrd.x | ⊢ (𝜑 → · ∈ 𝑄) |
ipsstrd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑍) |
Ref | Expression |
---|---|
ipsstrd | ⊢ (𝜑 → 𝐴 Struct 〈1, 8〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipspart.a | . 2 ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) | |
2 | ipsstrd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
3 | ipsstrd.p | . . . 4 ⊢ (𝜑 → + ∈ 𝑊) | |
4 | ipsstrd.r | . . . 4 ⊢ (𝜑 → × ∈ 𝑋) | |
5 | eqid 2193 | . . . . 5 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} | |
6 | 5 | rngstrg 12755 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ × ∈ 𝑋) → {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} Struct 〈1, 3〉) |
7 | 2, 3, 4, 6 | syl3anc 1249 | . . 3 ⊢ (𝜑 → {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} Struct 〈1, 3〉) |
8 | ipsstrd.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑌) | |
9 | ipsstrd.x | . . . 4 ⊢ (𝜑 → · ∈ 𝑄) | |
10 | ipsstrd.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑍) | |
11 | 5nn 9149 | . . . . 5 ⊢ 5 ∈ ℕ | |
12 | scandx 12771 | . . . . 5 ⊢ (Scalar‘ndx) = 5 | |
13 | 5lt6 9164 | . . . . 5 ⊢ 5 < 6 | |
14 | 6nn 9150 | . . . . 5 ⊢ 6 ∈ ℕ | |
15 | vscandx 12777 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) = 6 | |
16 | 6lt8 9176 | . . . . 5 ⊢ 6 < 8 | |
17 | 8nn 9152 | . . . . 5 ⊢ 8 ∈ ℕ | |
18 | ipndx 12789 | . . . . 5 ⊢ (·𝑖‘ndx) = 8 | |
19 | 11, 12, 13, 14, 15, 16, 17, 18 | strle3g 12729 | . . . 4 ⊢ ((𝑆 ∈ 𝑌 ∧ · ∈ 𝑄 ∧ 𝐼 ∈ 𝑍) → {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉} Struct 〈5, 8〉) |
20 | 8, 9, 10, 19 | syl3anc 1249 | . . 3 ⊢ (𝜑 → {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉} Struct 〈5, 8〉) |
21 | 3lt5 9161 | . . . 4 ⊢ 3 < 5 | |
22 | 21 | a1i 9 | . . 3 ⊢ (𝜑 → 3 < 5) |
23 | 7, 20, 22 | strleund 12724 | . 2 ⊢ (𝜑 → ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) Struct 〈1, 8〉) |
24 | 1, 23 | eqbrtrid 4065 | 1 ⊢ (𝜑 → 𝐴 Struct 〈1, 8〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ∪ cun 3152 {ctp 3621 〈cop 3622 class class class wbr 4030 ‘cfv 5255 1c1 7875 < clt 8056 3c3 9036 5c5 9038 6c6 9039 8c8 9041 Struct cstr 12617 ndxcnx 12618 Basecbs 12621 +gcplusg 12698 .rcmulr 12699 Scalarcsca 12701 ·𝑠 cvsca 12702 ·𝑖cip 12703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-tp 3627 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-n0 9244 df-z 9321 df-uz 9596 df-fz 10078 df-struct 12623 df-ndx 12624 df-slot 12625 df-base 12627 df-plusg 12711 df-mulr 12712 df-sca 12714 df-vsca 12715 df-ip 12716 |
This theorem is referenced by: ipsbased 12797 ipsaddgd 12798 ipsmulrd 12799 ipsscad 12800 ipsvscad 12801 ipsipd 12802 |
Copyright terms: Public domain | W3C validator |