Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ipsstrd | GIF version |
Description: A constructed inner product space is a structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.) |
Ref | Expression |
---|---|
ipspart.a | ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) |
ipsstrd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
ipsstrd.p | ⊢ (𝜑 → + ∈ 𝑊) |
ipsstrd.r | ⊢ (𝜑 → × ∈ 𝑋) |
ipsstrd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑌) |
ipsstrd.x | ⊢ (𝜑 → · ∈ 𝑄) |
ipsstrd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑍) |
Ref | Expression |
---|---|
ipsstrd | ⊢ (𝜑 → 𝐴 Struct 〈1, 8〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipspart.a | . 2 ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) | |
2 | ipsstrd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
3 | ipsstrd.p | . . . 4 ⊢ (𝜑 → + ∈ 𝑊) | |
4 | ipsstrd.r | . . . 4 ⊢ (𝜑 → × ∈ 𝑋) | |
5 | eqid 2170 | . . . . 5 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} | |
6 | 5 | rngstrg 12533 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ × ∈ 𝑋) → {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} Struct 〈1, 3〉) |
7 | 2, 3, 4, 6 | syl3anc 1233 | . . 3 ⊢ (𝜑 → {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} Struct 〈1, 3〉) |
8 | ipsstrd.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑌) | |
9 | ipsstrd.x | . . . 4 ⊢ (𝜑 → · ∈ 𝑄) | |
10 | ipsstrd.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑍) | |
11 | 5nn 9042 | . . . . 5 ⊢ 5 ∈ ℕ | |
12 | scandx 12545 | . . . . 5 ⊢ (Scalar‘ndx) = 5 | |
13 | 5lt6 9057 | . . . . 5 ⊢ 5 < 6 | |
14 | 6nn 9043 | . . . . 5 ⊢ 6 ∈ ℕ | |
15 | vscandx 12548 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) = 6 | |
16 | 6lt8 9069 | . . . . 5 ⊢ 6 < 8 | |
17 | 8nn 9045 | . . . . 5 ⊢ 8 ∈ ℕ | |
18 | ipndx 12556 | . . . . 5 ⊢ (·𝑖‘ndx) = 8 | |
19 | 11, 12, 13, 14, 15, 16, 17, 18 | strle3g 12510 | . . . 4 ⊢ ((𝑆 ∈ 𝑌 ∧ · ∈ 𝑄 ∧ 𝐼 ∈ 𝑍) → {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉} Struct 〈5, 8〉) |
20 | 8, 9, 10, 19 | syl3anc 1233 | . . 3 ⊢ (𝜑 → {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉} Struct 〈5, 8〉) |
21 | 3lt5 9054 | . . . 4 ⊢ 3 < 5 | |
22 | 21 | a1i 9 | . . 3 ⊢ (𝜑 → 3 < 5) |
23 | 7, 20, 22 | strleund 12506 | . 2 ⊢ (𝜑 → ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) Struct 〈1, 8〉) |
24 | 1, 23 | eqbrtrid 4024 | 1 ⊢ (𝜑 → 𝐴 Struct 〈1, 8〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ∪ cun 3119 {ctp 3585 〈cop 3586 class class class wbr 3989 ‘cfv 5198 1c1 7775 < clt 7954 3c3 8930 5c5 8932 6c6 8933 8c8 8935 Struct cstr 12412 ndxcnx 12413 Basecbs 12416 +gcplusg 12480 .rcmulr 12481 Scalarcsca 12483 ·𝑠 cvsca 12484 ·𝑖cip 12485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-tp 3591 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-7 8942 df-8 8943 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 df-struct 12418 df-ndx 12419 df-slot 12420 df-base 12422 df-plusg 12493 df-mulr 12494 df-sca 12496 df-vsca 12497 df-ip 12498 |
This theorem is referenced by: ipsbased 12560 ipsaddgd 12561 ipsmulrd 12562 ipsscad 12563 ipsvscad 12564 ipsipd 12565 |
Copyright terms: Public domain | W3C validator |