![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 8nn | GIF version |
Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
8nn | ⊢ 8 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-8 8485 | . 2 ⊢ 8 = (7 + 1) | |
2 | 7nn 8580 | . . 3 ⊢ 7 ∈ ℕ | |
3 | peano2nn 8432 | . . 3 ⊢ (7 ∈ ℕ → (7 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 7 | . 2 ⊢ (7 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2160 | 1 ⊢ 8 ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1438 (class class class)co 5652 1c1 7349 + caddc 7351 ℕcn 8420 7c7 8476 8c8 8477 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-cnex 7434 ax-resscn 7435 ax-1re 7437 ax-addrcl 7440 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-br 3846 df-iota 4980 df-fv 5023 df-ov 5655 df-inn 8421 df-2 8479 df-3 8480 df-4 8481 df-5 8482 df-6 8483 df-7 8484 df-8 8485 |
This theorem is referenced by: 9nn 8582 8nn0 8694 |
Copyright terms: Public domain | W3C validator |