| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8nn | GIF version | ||
| Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 8nn | ⊢ 8 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 9074 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7nn 9176 | . . 3 ⊢ 7 ∈ ℕ | |
| 3 | peano2nn 9021 | . . 3 ⊢ (7 ∈ ℕ → (7 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (7 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 8 ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 (class class class)co 5925 1c1 7899 + caddc 7901 ℕcn 9009 7c7 9065 8c8 9066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 df-7 9073 df-8 9074 |
| This theorem is referenced by: 9nn 9178 8nn0 9291 ipndx 12873 ipid 12874 ipslid 12875 ipsstrd 12880 lgsval 15353 lgsfvalg 15354 lgsfcl2 15355 lgsval2lem 15359 lgsdir2lem1 15377 lgsdir2lem2 15378 lgsdir2lem3 15379 lgsdir2lem4 15380 lgsdir2lem5 15381 lgsdir2 15382 lgsne0 15387 2lgslem3a1 15446 2lgslem3b1 15447 2lgslem3c1 15448 2lgslem3d1 15449 2lgslem4 15452 2lgs 15453 2lgsoddprmlem2 15455 2lgsoddprm 15462 |
| Copyright terms: Public domain | W3C validator |