| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8nn | GIF version | ||
| Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 8nn | ⊢ 8 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 9100 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7nn 9202 | . . 3 ⊢ 7 ∈ ℕ | |
| 3 | peano2nn 9047 | . . 3 ⊢ (7 ∈ ℕ → (7 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (7 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2277 | 1 ⊢ 8 ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 (class class class)co 5943 1c1 7925 + caddc 7927 ℕcn 9035 7c7 9091 8c8 9092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 |
| This theorem is referenced by: 9nn 9204 8nn0 9317 ipndx 12943 ipid 12944 ipslid 12945 ipsstrd 12950 lgsval 15423 lgsfvalg 15424 lgsfcl2 15425 lgsval2lem 15429 lgsdir2lem1 15447 lgsdir2lem2 15448 lgsdir2lem3 15449 lgsdir2lem4 15450 lgsdir2lem5 15451 lgsdir2 15452 lgsne0 15457 2lgslem3a1 15516 2lgslem3b1 15517 2lgslem3c1 15518 2lgslem3d1 15519 2lgslem4 15522 2lgs 15523 2lgsoddprmlem2 15525 2lgsoddprm 15532 edgfid 15547 edgfndx 15548 edgfndxnn 15549 |
| Copyright terms: Public domain | W3C validator |