![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 8nn | GIF version |
Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
8nn | ⊢ 8 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-8 9002 | . 2 ⊢ 8 = (7 + 1) | |
2 | 7nn 9103 | . . 3 ⊢ 7 ∈ ℕ | |
3 | peano2nn 8949 | . . 3 ⊢ (7 ∈ ℕ → (7 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (7 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2262 | 1 ⊢ 8 ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2160 (class class class)co 5891 1c1 7830 + caddc 7832 ℕcn 8937 7c7 8993 8c8 8994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-sep 4136 ax-cnex 7920 ax-resscn 7921 ax-1re 7923 ax-addrcl 7926 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-iota 5193 df-fv 5239 df-ov 5894 df-inn 8938 df-2 8996 df-3 8997 df-4 8998 df-5 8999 df-6 9000 df-7 9001 df-8 9002 |
This theorem is referenced by: 9nn 9105 8nn0 9217 ipndx 12646 ipid 12647 ipslid 12648 ipsstrd 12653 lgsval 14789 lgsfvalg 14790 lgsfcl2 14791 lgsval2lem 14795 lgsdir2lem1 14813 lgsdir2lem2 14814 lgsdir2lem3 14815 lgsdir2lem4 14816 lgsdir2lem5 14817 lgsdir2 14818 lgsne0 14823 2lgsoddprmlem2 14838 |
Copyright terms: Public domain | W3C validator |