| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8nn | GIF version | ||
| Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 8nn | ⊢ 8 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 9057 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7nn 9159 | . . 3 ⊢ 7 ∈ ℕ | |
| 3 | peano2nn 9004 | . . 3 ⊢ (7 ∈ ℕ → (7 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (7 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 8 ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 (class class class)co 5923 1c1 7882 + caddc 7884 ℕcn 8992 7c7 9048 8c8 9049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7972 ax-resscn 7973 ax-1re 7975 ax-addrcl 7978 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5926 df-inn 8993 df-2 9051 df-3 9052 df-4 9053 df-5 9054 df-6 9055 df-7 9056 df-8 9057 |
| This theorem is referenced by: 9nn 9161 8nn0 9274 ipndx 12856 ipid 12857 ipslid 12858 ipsstrd 12863 lgsval 15255 lgsfvalg 15256 lgsfcl2 15257 lgsval2lem 15261 lgsdir2lem1 15279 lgsdir2lem2 15280 lgsdir2lem3 15281 lgsdir2lem4 15282 lgsdir2lem5 15283 lgsdir2 15284 lgsne0 15289 2lgslem3a1 15348 2lgslem3b1 15349 2lgslem3c1 15350 2lgslem3d1 15351 2lgslem4 15354 2lgs 15355 2lgsoddprmlem2 15357 2lgsoddprm 15364 |
| Copyright terms: Public domain | W3C validator |