| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8nn | GIF version | ||
| Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 8nn | ⊢ 8 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 9121 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7nn 9223 | . . 3 ⊢ 7 ∈ ℕ | |
| 3 | peano2nn 9068 | . . 3 ⊢ (7 ∈ ℕ → (7 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (7 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2279 | 1 ⊢ 8 ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 (class class class)co 5957 1c1 7946 + caddc 7948 ℕcn 9056 7c7 9112 8c8 9113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 |
| This theorem is referenced by: 9nn 9225 8nn0 9338 ipndx 13076 ipid 13077 ipslid 13078 ipsstrd 13083 lgsval 15556 lgsfvalg 15557 lgsfcl2 15558 lgsval2lem 15562 lgsdir2lem1 15580 lgsdir2lem2 15581 lgsdir2lem3 15582 lgsdir2lem4 15583 lgsdir2lem5 15584 lgsdir2 15585 lgsne0 15590 2lgslem3a1 15649 2lgslem3b1 15650 2lgslem3c1 15651 2lgslem3d1 15652 2lgslem4 15655 2lgs 15656 2lgsoddprmlem2 15658 2lgsoddprm 15665 edgfid 15680 edgfndx 15681 edgfndxnn 15682 |
| Copyright terms: Public domain | W3C validator |