ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  8nn GIF version

Theorem 8nn 8581
Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
8nn 8 ∈ ℕ

Proof of Theorem 8nn
StepHypRef Expression
1 df-8 8485 . 2 8 = (7 + 1)
2 7nn 8580 . . 3 7 ∈ ℕ
3 peano2nn 8432 . . 3 (7 ∈ ℕ → (7 + 1) ∈ ℕ)
42, 3ax-mp 7 . 2 (7 + 1) ∈ ℕ
51, 4eqeltri 2160 1 8 ∈ ℕ
Colors of variables: wff set class
Syntax hints:  wcel 1438  (class class class)co 5652  1c1 7349   + caddc 7351  cn 8420  7c7 8476  8c8 8477
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-cnex 7434  ax-resscn 7435  ax-1re 7437  ax-addrcl 7440
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-br 3846  df-iota 4980  df-fv 5023  df-ov 5655  df-inn 8421  df-2 8479  df-3 8480  df-4 8481  df-5 8482  df-6 8483  df-7 8484  df-8 8485
This theorem is referenced by:  9nn  8582  8nn0  8694
  Copyright terms: Public domain W3C validator