| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8nn | GIF version | ||
| Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 8nn | ⊢ 8 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 9171 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7nn 9273 | . . 3 ⊢ 7 ∈ ℕ | |
| 3 | peano2nn 9118 | . . 3 ⊢ (7 ∈ ℕ → (7 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (7 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2302 | 1 ⊢ 8 ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 (class class class)co 6000 1c1 7996 + caddc 7998 ℕcn 9106 7c7 9162 8c8 9163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 |
| This theorem is referenced by: 9nn 9275 8nn0 9388 ipndx 13197 ipid 13198 ipslid 13199 ipsstrd 13204 lgsval 15677 lgsfvalg 15678 lgsfcl2 15679 lgsval2lem 15683 lgsdir2lem1 15701 lgsdir2lem2 15702 lgsdir2lem3 15703 lgsdir2lem4 15704 lgsdir2lem5 15705 lgsdir2 15706 lgsne0 15711 2lgslem3a1 15770 2lgslem3b1 15771 2lgslem3c1 15772 2lgslem3d1 15773 2lgslem4 15776 2lgs 15777 2lgsoddprmlem2 15779 2lgsoddprm 15786 edgfid 15801 edgfndx 15802 edgfndxnn 15803 |
| Copyright terms: Public domain | W3C validator |