| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8nn | GIF version | ||
| Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 8nn | ⊢ 8 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 9083 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7nn 9185 | . . 3 ⊢ 7 ∈ ℕ | |
| 3 | peano2nn 9030 | . . 3 ⊢ (7 ∈ ℕ → (7 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (7 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2277 | 1 ⊢ 8 ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 (class class class)co 5934 1c1 7908 + caddc 7910 ℕcn 9018 7c7 9074 8c8 9075 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-iota 5229 df-fv 5276 df-ov 5937 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-5 9080 df-6 9081 df-7 9082 df-8 9083 |
| This theorem is referenced by: 9nn 9187 8nn0 9300 ipndx 12919 ipid 12920 ipslid 12921 ipsstrd 12926 lgsval 15399 lgsfvalg 15400 lgsfcl2 15401 lgsval2lem 15405 lgsdir2lem1 15423 lgsdir2lem2 15424 lgsdir2lem3 15425 lgsdir2lem4 15426 lgsdir2lem5 15427 lgsdir2 15428 lgsne0 15433 2lgslem3a1 15492 2lgslem3b1 15493 2lgslem3c1 15494 2lgslem3d1 15495 2lgslem4 15498 2lgs 15499 2lgsoddprmlem2 15501 2lgsoddprm 15508 |
| Copyright terms: Public domain | W3C validator |