| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8nn | GIF version | ||
| Description: 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 8nn | ⊢ 8 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 9072 | . 2 ⊢ 8 = (7 + 1) | |
| 2 | 7nn 9174 | . . 3 ⊢ 7 ∈ ℕ | |
| 3 | peano2nn 9019 | . . 3 ⊢ (7 ∈ ℕ → (7 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (7 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 8 ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 (class class class)co 5925 1c1 7897 + caddc 7899 ℕcn 9007 7c7 9063 8c8 9064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 |
| This theorem is referenced by: 9nn 9176 8nn0 9289 ipndx 12871 ipid 12872 ipslid 12873 ipsstrd 12878 lgsval 15329 lgsfvalg 15330 lgsfcl2 15331 lgsval2lem 15335 lgsdir2lem1 15353 lgsdir2lem2 15354 lgsdir2lem3 15355 lgsdir2lem4 15356 lgsdir2lem5 15357 lgsdir2 15358 lgsne0 15363 2lgslem3a1 15422 2lgslem3b1 15423 2lgslem3c1 15424 2lgslem3d1 15425 2lgslem4 15428 2lgs 15429 2lgsoddprmlem2 15431 2lgsoddprm 15438 |
| Copyright terms: Public domain | W3C validator |