ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cjadd GIF version

Theorem cjadd 10283
Description: Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
cjadd ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵)))

Proof of Theorem cjadd
StepHypRef Expression
1 readd 10268 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵)))
2 imadd 10276 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵)))
32oveq2d 5650 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘(𝐴 + 𝐵))) = (i · ((ℑ‘𝐴) + (ℑ‘𝐵))))
4 ax-icn 7419 . . . . . . 7 i ∈ ℂ
54a1i 9 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → i ∈ ℂ)
6 imcl 10253 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
76adantr 270 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℝ)
87recnd 7495 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℂ)
9 imcl 10253 . . . . . . . 8 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ)
109adantl 271 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℝ)
1110recnd 7495 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℂ)
125, 8, 11adddid 7491 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · ((ℑ‘𝐴) + (ℑ‘𝐵))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐵))))
133, 12eqtrd 2120 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘(𝐴 + 𝐵))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐵))))
141, 13oveq12d 5652 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 + 𝐵)) − (i · (ℑ‘(𝐴 + 𝐵)))) = (((ℜ‘𝐴) + (ℜ‘𝐵)) − ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐵)))))
15 recl 10252 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
1615adantr 270 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℝ)
1716recnd 7495 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℂ)
18 recl 10252 . . . . . 6 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
1918adantl 271 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℝ)
2019recnd 7495 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℂ)
21 mulcl 7448 . . . . 5 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
224, 8, 21sylancr 405 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
23 mulcl 7448 . . . . 5 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
244, 11, 23sylancr 405 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
2517, 20, 22, 24addsub4d 7819 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (ℜ‘𝐵)) − ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐵)))) = (((ℜ‘𝐴) − (i · (ℑ‘𝐴))) + ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))))
2614, 25eqtrd 2120 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 + 𝐵)) − (i · (ℑ‘(𝐴 + 𝐵)))) = (((ℜ‘𝐴) − (i · (ℑ‘𝐴))) + ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))))
27 addcl 7446 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
28 remim 10259 . . 3 ((𝐴 + 𝐵) ∈ ℂ → (∗‘(𝐴 + 𝐵)) = ((ℜ‘(𝐴 + 𝐵)) − (i · (ℑ‘(𝐴 + 𝐵)))))
2927, 28syl 14 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + 𝐵)) = ((ℜ‘(𝐴 + 𝐵)) − (i · (ℑ‘(𝐴 + 𝐵)))))
30 remim 10259 . . 3 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
31 remim 10259 . . 3 (𝐵 ∈ ℂ → (∗‘𝐵) = ((ℜ‘𝐵) − (i · (ℑ‘𝐵))))
3230, 31oveqan12d 5653 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) + (∗‘𝐵)) = (((ℜ‘𝐴) − (i · (ℑ‘𝐴))) + ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))))
3326, 29, 323eqtr4d 2130 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1289  wcel 1438  cfv 5002  (class class class)co 5634  cc 7327  cr 7328  ici 7331   + caddc 7332   · cmul 7334  cmin 7632  ccj 10238  cre 10239  cim 10240
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-po 4114  df-iso 4115  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-2 8452  df-cj 10241  df-re 10242  df-im 10243
This theorem is referenced by:  cjsub  10291  cjreim  10302  cjaddi  10331  cjaddd  10364  sqabsadd  10453  fsumcj  10831
  Copyright terms: Public domain W3C validator