ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpmulcxp GIF version

Theorem rpmulcxp 14201
Description: Complex exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
rpmulcxp ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)))

Proof of Theorem rpmulcxp
StepHypRef Expression
1 simp1 997 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → 𝐴 ∈ ℝ+)
2 simp2 998 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → 𝐵 ∈ ℝ+)
31, 2relogmuld 14176 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (log‘(𝐴 · 𝐵)) = ((log‘𝐴) + (log‘𝐵)))
43oveq2d 5888 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (𝐶 · (log‘(𝐴 · 𝐵))) = (𝐶 · ((log‘𝐴) + (log‘𝐵))))
5 simp3 999 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
61relogcld 14174 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (log‘𝐴) ∈ ℝ)
76recnd 7982 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (log‘𝐴) ∈ ℂ)
82relogcld 14174 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (log‘𝐵) ∈ ℝ)
98recnd 7982 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (log‘𝐵) ∈ ℂ)
105, 7, 9adddid 7978 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (𝐶 · ((log‘𝐴) + (log‘𝐵))) = ((𝐶 · (log‘𝐴)) + (𝐶 · (log‘𝐵))))
114, 10eqtrd 2210 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (𝐶 · (log‘(𝐴 · 𝐵))) = ((𝐶 · (log‘𝐴)) + (𝐶 · (log‘𝐵))))
1211fveq2d 5518 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (exp‘(𝐶 · (log‘(𝐴 · 𝐵)))) = (exp‘((𝐶 · (log‘𝐴)) + (𝐶 · (log‘𝐵)))))
135, 7mulcld 7974 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (𝐶 · (log‘𝐴)) ∈ ℂ)
145, 9mulcld 7974 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (𝐶 · (log‘𝐵)) ∈ ℂ)
15 efadd 11676 . . . 4 (((𝐶 · (log‘𝐴)) ∈ ℂ ∧ (𝐶 · (log‘𝐵)) ∈ ℂ) → (exp‘((𝐶 · (log‘𝐴)) + (𝐶 · (log‘𝐵)))) = ((exp‘(𝐶 · (log‘𝐴))) · (exp‘(𝐶 · (log‘𝐵)))))
1613, 14, 15syl2anc 411 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (exp‘((𝐶 · (log‘𝐴)) + (𝐶 · (log‘𝐵)))) = ((exp‘(𝐶 · (log‘𝐴))) · (exp‘(𝐶 · (log‘𝐵)))))
1712, 16eqtrd 2210 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (exp‘(𝐶 · (log‘(𝐴 · 𝐵)))) = ((exp‘(𝐶 · (log‘𝐴))) · (exp‘(𝐶 · (log‘𝐵)))))
181, 2rpmulcld 9709 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℝ+)
19 rpcxpef 14186 . . 3 (((𝐴 · 𝐵) ∈ ℝ+𝐶 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑐𝐶) = (exp‘(𝐶 · (log‘(𝐴 · 𝐵)))))
2018, 5, 19syl2anc 411 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑐𝐶) = (exp‘(𝐶 · (log‘(𝐴 · 𝐵)))))
21 rpcxpef 14186 . . . 4 ((𝐴 ∈ ℝ+𝐶 ∈ ℂ) → (𝐴𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴))))
221, 5, 21syl2anc 411 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (𝐴𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴))))
23 rpcxpef 14186 . . . 4 ((𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (𝐵𝑐𝐶) = (exp‘(𝐶 · (log‘𝐵))))
242, 5, 23syl2anc 411 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (𝐵𝑐𝐶) = (exp‘(𝐶 · (log‘𝐵))))
2522, 24oveq12d 5890 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)) = ((exp‘(𝐶 · (log‘𝐴))) · (exp‘(𝐶 · (log‘𝐵)))))
2617, 20, 253eqtr4d 2220 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 978   = wceq 1353  wcel 2148  cfv 5215  (class class class)co 5872  cc 7806   + caddc 7811   · cmul 7813  +crp 9649  expce 11643  logclog 14148  𝑐ccxp 14149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4117  ax-sep 4120  ax-nul 4128  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-iinf 4586  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-mulrcl 7907  ax-addcom 7908  ax-mulcom 7909  ax-addass 7910  ax-mulass 7911  ax-distr 7912  ax-i2m1 7913  ax-0lt1 7914  ax-1rid 7915  ax-0id 7916  ax-rnegex 7917  ax-precex 7918  ax-cnre 7919  ax-pre-ltirr 7920  ax-pre-ltwlin 7921  ax-pre-lttrn 7922  ax-pre-apti 7923  ax-pre-ltadd 7924  ax-pre-mulgt0 7925  ax-pre-mulext 7926  ax-arch 7927  ax-caucvg 7928  ax-pre-suploc 7929  ax-addf 7930  ax-mulf 7931
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-disj 3980  df-br 4003  df-opab 4064  df-mpt 4065  df-tr 4101  df-id 4292  df-po 4295  df-iso 4296  df-iord 4365  df-on 4367  df-ilim 4368  df-suc 4370  df-iom 4589  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-f 5219  df-f1 5220  df-fo 5221  df-f1o 5222  df-fv 5223  df-isom 5224  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-of 6080  df-1st 6138  df-2nd 6139  df-recs 6303  df-irdg 6368  df-frec 6389  df-1o 6414  df-oadd 6418  df-er 6532  df-map 6647  df-pm 6648  df-en 6738  df-dom 6739  df-fin 6740  df-sup 6980  df-inf 6981  df-pnf 7990  df-mnf 7991  df-xr 7992  df-ltxr 7993  df-le 7994  df-sub 8126  df-neg 8127  df-reap 8528  df-ap 8535  df-div 8626  df-inn 8916  df-2 8974  df-3 8975  df-4 8976  df-n0 9173  df-z 9250  df-uz 9525  df-q 9616  df-rp 9650  df-xneg 9768  df-xadd 9769  df-ioo 9888  df-ico 9890  df-icc 9891  df-fz 10005  df-fzo 10138  df-seqfrec 10441  df-exp 10515  df-fac 10699  df-bc 10721  df-ihash 10749  df-shft 10817  df-cj 10844  df-re 10845  df-im 10846  df-rsqrt 11000  df-abs 11001  df-clim 11280  df-sumdc 11355  df-ef 11649  df-e 11650  df-rest 12678  df-topgen 12697  df-psmet 13316  df-xmet 13317  df-met 13318  df-bl 13319  df-mopn 13320  df-top 13367  df-topon 13380  df-bases 13412  df-ntr 13467  df-cn 13559  df-cnp 13560  df-tx 13624  df-cncf 13929  df-limced 13996  df-dvap 13997  df-relog 14150  df-rpcxp 14151
This theorem is referenced by:  cxprec  14202  rpdivcxp  14203
  Copyright terms: Public domain W3C validator