| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpmulcxp | GIF version | ||
| Description: Complex exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| Ref | Expression |
|---|---|
| rpmulcxp | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴↑𝑐𝐶) · (𝐵↑𝑐𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℝ+) | |
| 2 | simp2 1001 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℝ+) | |
| 3 | 1, 2 | relogmuld 15471 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (log‘(𝐴 · 𝐵)) = ((log‘𝐴) + (log‘𝐵))) |
| 4 | 3 | oveq2d 5983 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (𝐶 · (log‘(𝐴 · 𝐵))) = (𝐶 · ((log‘𝐴) + (log‘𝐵)))) |
| 5 | simp3 1002 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ) | |
| 6 | 1 | relogcld 15469 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (log‘𝐴) ∈ ℝ) |
| 7 | 6 | recnd 8136 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (log‘𝐴) ∈ ℂ) |
| 8 | 2 | relogcld 15469 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (log‘𝐵) ∈ ℝ) |
| 9 | 8 | recnd 8136 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (log‘𝐵) ∈ ℂ) |
| 10 | 5, 7, 9 | adddid 8132 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (𝐶 · ((log‘𝐴) + (log‘𝐵))) = ((𝐶 · (log‘𝐴)) + (𝐶 · (log‘𝐵)))) |
| 11 | 4, 10 | eqtrd 2240 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (𝐶 · (log‘(𝐴 · 𝐵))) = ((𝐶 · (log‘𝐴)) + (𝐶 · (log‘𝐵)))) |
| 12 | 11 | fveq2d 5603 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (exp‘(𝐶 · (log‘(𝐴 · 𝐵)))) = (exp‘((𝐶 · (log‘𝐴)) + (𝐶 · (log‘𝐵))))) |
| 13 | 5, 7 | mulcld 8128 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (𝐶 · (log‘𝐴)) ∈ ℂ) |
| 14 | 5, 9 | mulcld 8128 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (𝐶 · (log‘𝐵)) ∈ ℂ) |
| 15 | efadd 12101 | . . . 4 ⊢ (((𝐶 · (log‘𝐴)) ∈ ℂ ∧ (𝐶 · (log‘𝐵)) ∈ ℂ) → (exp‘((𝐶 · (log‘𝐴)) + (𝐶 · (log‘𝐵)))) = ((exp‘(𝐶 · (log‘𝐴))) · (exp‘(𝐶 · (log‘𝐵))))) | |
| 16 | 13, 14, 15 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (exp‘((𝐶 · (log‘𝐴)) + (𝐶 · (log‘𝐵)))) = ((exp‘(𝐶 · (log‘𝐴))) · (exp‘(𝐶 · (log‘𝐵))))) |
| 17 | 12, 16 | eqtrd 2240 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (exp‘(𝐶 · (log‘(𝐴 · 𝐵)))) = ((exp‘(𝐶 · (log‘𝐴))) · (exp‘(𝐶 · (log‘𝐵))))) |
| 18 | 1, 2 | rpmulcld 9870 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℝ+) |
| 19 | rpcxpef 15481 | . . 3 ⊢ (((𝐴 · 𝐵) ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑐𝐶) = (exp‘(𝐶 · (log‘(𝐴 · 𝐵))))) | |
| 20 | 18, 5, 19 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑐𝐶) = (exp‘(𝐶 · (log‘(𝐴 · 𝐵))))) |
| 21 | rpcxpef 15481 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴)))) | |
| 22 | 1, 5, 21 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴)))) |
| 23 | rpcxpef 15481 | . . . 4 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (𝐵↑𝑐𝐶) = (exp‘(𝐶 · (log‘𝐵)))) | |
| 24 | 2, 5, 23 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (𝐵↑𝑐𝐶) = (exp‘(𝐶 · (log‘𝐵)))) |
| 25 | 22, 24 | oveq12d 5985 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → ((𝐴↑𝑐𝐶) · (𝐵↑𝑐𝐶)) = ((exp‘(𝐶 · (log‘𝐴))) · (exp‘(𝐶 · (log‘𝐵))))) |
| 26 | 17, 20, 25 | 3eqtr4d 2250 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴↑𝑐𝐶) · (𝐵↑𝑐𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 = wceq 1373 ∈ wcel 2178 ‘cfv 5290 (class class class)co 5967 ℂcc 7958 + caddc 7963 · cmul 7965 ℝ+crp 9810 expce 12068 logclog 15443 ↑𝑐ccxp 15444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 ax-pre-suploc 8081 ax-addf 8082 ax-mulf 8083 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-disj 4036 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-of 6181 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-map 6760 df-pm 6761 df-en 6851 df-dom 6852 df-fin 6853 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-xneg 9929 df-xadd 9930 df-ioo 10049 df-ico 10051 df-icc 10052 df-fz 10166 df-fzo 10300 df-seqfrec 10630 df-exp 10721 df-fac 10908 df-bc 10930 df-ihash 10958 df-shft 11241 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-sumdc 11780 df-ef 12074 df-e 12075 df-rest 13188 df-topgen 13207 df-psmet 14420 df-xmet 14421 df-met 14422 df-bl 14423 df-mopn 14424 df-top 14585 df-topon 14598 df-bases 14630 df-ntr 14683 df-cn 14775 df-cnp 14776 df-tx 14840 df-cncf 15158 df-limced 15243 df-dvap 15244 df-relog 15445 df-rpcxp 15446 |
| This theorem is referenced by: cxprec 15497 rpdivcxp 15498 sgmmul 15583 |
| Copyright terms: Public domain | W3C validator |