ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsummulc2 GIF version

Theorem fsummulc2 11701
Description: A finite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsummulc2.1 (𝜑𝐴 ∈ Fin)
fsummulc2.2 (𝜑𝐶 ∈ ℂ)
fsummulc2.3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsummulc2 (𝜑 → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsummulc2
Dummy variables 𝑓 𝑚 𝑛 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsummulc2.2 . . . 4 (𝜑𝐶 ∈ ℂ)
21mul01d 8464 . . 3 (𝜑 → (𝐶 · 0) = 0)
3 sumeq1 11608 . . . . . 6 (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
4 sum0 11641 . . . . . 6 Σ𝑘 ∈ ∅ 𝐵 = 0
53, 4eqtrdi 2253 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = 0)
65oveq2d 5959 . . . 4 (𝐴 = ∅ → (𝐶 · Σ𝑘𝐴 𝐵) = (𝐶 · 0))
7 sumeq1 11608 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 (𝐶 · 𝐵) = Σ𝑘 ∈ ∅ (𝐶 · 𝐵))
8 sum0 11641 . . . . 5 Σ𝑘 ∈ ∅ (𝐶 · 𝐵) = 0
97, 8eqtrdi 2253 . . . 4 (𝐴 = ∅ → Σ𝑘𝐴 (𝐶 · 𝐵) = 0)
106, 9eqeq12d 2219 . . 3 (𝐴 = ∅ → ((𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵) ↔ (𝐶 · 0) = 0))
112, 10syl5ibrcom 157 . 2 (𝜑 → (𝐴 = ∅ → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵)))
12 addcl 8049 . . . . . . . . 9 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + 𝑣) ∈ ℂ)
1312adantl 277 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 + 𝑣) ∈ ℂ)
141ad2antrr 488 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐶 ∈ ℂ)
15 simprl 529 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑢 ∈ ℂ)
16 simprr 531 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑣 ∈ ℂ)
1714, 15, 16adddid 8096 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐶 · (𝑢 + 𝑣)) = ((𝐶 · 𝑢) + (𝐶 · 𝑣)))
18 simprl 529 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
19 nnuz 9683 . . . . . . . . 9 ℕ = (ℤ‘1)
2018, 19eleqtrdi 2297 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
21 elnnuz 9684 . . . . . . . . . . . 12 (𝑢 ∈ ℕ ↔ 𝑢 ∈ (ℤ‘1))
2221biimpri 133 . . . . . . . . . . 11 (𝑢 ∈ (ℤ‘1) → 𝑢 ∈ ℕ)
2322adantl 277 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → 𝑢 ∈ ℕ)
24 f1of 5521 . . . . . . . . . . . . . . 15 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
2524ad2antll 491 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
2625ad2antrr 488 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
27 1zzd 9398 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → 1 ∈ ℤ)
2818ad2antrr 488 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (♯‘𝐴) ∈ ℕ)
2928nnzd 9493 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (♯‘𝐴) ∈ ℤ)
30 eluzelz 9656 . . . . . . . . . . . . . . . 16 (𝑢 ∈ (ℤ‘1) → 𝑢 ∈ ℤ)
3130ad2antlr 489 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → 𝑢 ∈ ℤ)
3227, 29, 313jca 1179 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (1 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑢 ∈ ℤ))
33 eluzle 9659 . . . . . . . . . . . . . . . 16 (𝑢 ∈ (ℤ‘1) → 1 ≤ 𝑢)
3433ad2antlr 489 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → 1 ≤ 𝑢)
35 simpr 110 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → 𝑢 ≤ (♯‘𝐴))
3634, 35jca 306 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (1 ≤ 𝑢𝑢 ≤ (♯‘𝐴)))
37 elfz2 10136 . . . . . . . . . . . . . 14 (𝑢 ∈ (1...(♯‘𝐴)) ↔ ((1 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑢 ∈ ℤ) ∧ (1 ≤ 𝑢𝑢 ≤ (♯‘𝐴))))
3832, 36, 37sylanbrc 417 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → 𝑢 ∈ (1...(♯‘𝐴)))
39 fvco3 5649 . . . . . . . . . . . . 13 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑢 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢) = ((𝑘𝐴𝐵)‘(𝑓𝑢)))
4026, 38, 39syl2anc 411 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢) = ((𝑘𝐴𝐵)‘(𝑓𝑢)))
4126, 38ffvelcdmd 5715 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (𝑓𝑢) ∈ 𝐴)
42 fsummulc2.3 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
4342ralrimiva 2578 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
4443ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
45 nfcsb1v 3125 . . . . . . . . . . . . . . . . 17 𝑘(𝑓𝑢) / 𝑘𝐵
4645nfel1 2358 . . . . . . . . . . . . . . . 16 𝑘(𝑓𝑢) / 𝑘𝐵 ∈ ℂ
47 csbeq1a 3101 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑓𝑢) → 𝐵 = (𝑓𝑢) / 𝑘𝐵)
4847eleq1d 2273 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑓𝑢) → (𝐵 ∈ ℂ ↔ (𝑓𝑢) / 𝑘𝐵 ∈ ℂ))
4946, 48rspc 2870 . . . . . . . . . . . . . . 15 ((𝑓𝑢) ∈ 𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → (𝑓𝑢) / 𝑘𝐵 ∈ ℂ))
5041, 44, 49sylc 62 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (𝑓𝑢) / 𝑘𝐵 ∈ ℂ)
51 eqid 2204 . . . . . . . . . . . . . . 15 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
5251fvmpts 5656 . . . . . . . . . . . . . 14 (((𝑓𝑢) ∈ 𝐴(𝑓𝑢) / 𝑘𝐵 ∈ ℂ) → ((𝑘𝐴𝐵)‘(𝑓𝑢)) = (𝑓𝑢) / 𝑘𝐵)
5341, 50, 52syl2anc 411 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → ((𝑘𝐴𝐵)‘(𝑓𝑢)) = (𝑓𝑢) / 𝑘𝐵)
5453, 50eqeltrd 2281 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → ((𝑘𝐴𝐵)‘(𝑓𝑢)) ∈ ℂ)
5540, 54eqeltrd 2281 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢) ∈ ℂ)
56 0cnd 8064 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ≤ (♯‘𝐴)) → 0 ∈ ℂ)
5723nnzd 9493 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → 𝑢 ∈ ℤ)
5818adantr 276 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → (♯‘𝐴) ∈ ℕ)
5958nnzd 9493 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → (♯‘𝐴) ∈ ℤ)
60 zdcle 9448 . . . . . . . . . . . 12 ((𝑢 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → DECID 𝑢 ≤ (♯‘𝐴))
6157, 59, 60syl2anc 411 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → DECID 𝑢 ≤ (♯‘𝐴))
6255, 56, 61ifcldadc 3599 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0) ∈ ℂ)
63 breq1 4046 . . . . . . . . . . . 12 (𝑛 = 𝑢 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑢 ≤ (♯‘𝐴)))
64 fveq2 5575 . . . . . . . . . . . 12 (𝑛 = 𝑢 → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢))
6563, 64ifbieq1d 3592 . . . . . . . . . . 11 (𝑛 = 𝑢 → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0) = if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0))
66 eqid 2204 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0))
6765, 66fvmptg 5654 . . . . . . . . . 10 ((𝑢 ∈ ℕ ∧ if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0))‘𝑢) = if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0))
6823, 62, 67syl2anc 411 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0))‘𝑢) = if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0))
6968, 62eqeltrd 2281 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0))‘𝑢) ∈ ℂ)
70 csbov2g 5985 . . . . . . . . . . . 12 ((𝑓𝑢) ∈ 𝐴(𝑓𝑢) / 𝑘(𝐶 · 𝐵) = (𝐶 · (𝑓𝑢) / 𝑘𝐵))
7141, 70syl 14 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (𝑓𝑢) / 𝑘(𝐶 · 𝐵) = (𝐶 · (𝑓𝑢) / 𝑘𝐵))
7235iftrued 3577 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0) = (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢))
73 fvco3 5649 . . . . . . . . . . . . 13 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑢 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢) = ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑢)))
7426, 38, 73syl2anc 411 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢) = ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑢)))
751ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → 𝐶 ∈ ℂ)
7675, 50mulcld 8092 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (𝐶 · (𝑓𝑢) / 𝑘𝐵) ∈ ℂ)
7771, 76eqeltrd 2281 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (𝑓𝑢) / 𝑘(𝐶 · 𝐵) ∈ ℂ)
78 eqid 2204 . . . . . . . . . . . . . 14 (𝑘𝐴 ↦ (𝐶 · 𝐵)) = (𝑘𝐴 ↦ (𝐶 · 𝐵))
7978fvmpts 5656 . . . . . . . . . . . . 13 (((𝑓𝑢) ∈ 𝐴(𝑓𝑢) / 𝑘(𝐶 · 𝐵) ∈ ℂ) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑢)) = (𝑓𝑢) / 𝑘(𝐶 · 𝐵))
8041, 77, 79syl2anc 411 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑢)) = (𝑓𝑢) / 𝑘(𝐶 · 𝐵))
8172, 74, 803eqtrd 2241 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0) = (𝑓𝑢) / 𝑘(𝐶 · 𝐵))
8235iftrued 3577 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0) = (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢))
8382, 40, 533eqtrd 2241 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0) = (𝑓𝑢) / 𝑘𝐵)
8483oveq2d 5959 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (𝐶 · if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0)) = (𝐶 · (𝑓𝑢) / 𝑘𝐵))
8571, 81, 843eqtr4d 2247 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0) = (𝐶 · if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0)))
861ad3antrrr 492 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ≤ (♯‘𝐴)) → 𝐶 ∈ ℂ)
8786mul01d 8464 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ≤ (♯‘𝐴)) → (𝐶 · 0) = 0)
88 simpr 110 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ≤ (♯‘𝐴)) → ¬ 𝑢 ≤ (♯‘𝐴))
8988iffalsed 3580 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ≤ (♯‘𝐴)) → if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0) = 0)
9089oveq2d 5959 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ≤ (♯‘𝐴)) → (𝐶 · if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0)) = (𝐶 · 0))
9188iffalsed 3580 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ≤ (♯‘𝐴)) → if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0) = 0)
9287, 90, 913eqtr4rd 2248 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ≤ (♯‘𝐴)) → if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0) = (𝐶 · if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0)))
93 exmiddc 837 . . . . . . . . . . 11 (DECID 𝑢 ≤ (♯‘𝐴) → (𝑢 ≤ (♯‘𝐴) ∨ ¬ 𝑢 ≤ (♯‘𝐴)))
9461, 93syl 14 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → (𝑢 ≤ (♯‘𝐴) ∨ ¬ 𝑢 ≤ (♯‘𝐴)))
9585, 92, 94mpjaodan 799 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0) = (𝐶 · if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0)))
9680, 77eqeltrd 2281 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑢)) ∈ ℂ)
9774, 96eqeltrd 2281 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢) ∈ ℂ)
9897, 56, 61ifcldadc 3599 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0) ∈ ℂ)
99 fveq2 5575 . . . . . . . . . . . 12 (𝑛 = 𝑢 → (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛) = (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢))
10063, 99ifbieq1d 3592 . . . . . . . . . . 11 (𝑛 = 𝑢 → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛), 0) = if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0))
101 eqid 2204 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛), 0))
102100, 101fvmptg 5654 . . . . . . . . . 10 ((𝑢 ∈ ℕ ∧ if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛), 0))‘𝑢) = if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0))
10323, 98, 102syl2anc 411 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛), 0))‘𝑢) = if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0))
10468oveq2d 5959 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → (𝐶 · ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0))‘𝑢)) = (𝐶 · if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0)))
10595, 103, 1043eqtr4d 2247 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛), 0))‘𝑢) = (𝐶 · ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0))‘𝑢)))
106 mulcl 8051 . . . . . . . . 9 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ)
107106adantl 277 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 · 𝑣) ∈ ℂ)
1081adantr 276 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝐶 ∈ ℂ)
10913, 17, 20, 69, 105, 107, 108seq3distr 10675 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴)) = (𝐶 · (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴))))
110 fveq2 5575 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑚) = ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑛)))
111 simprr 531 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
1121adantr 276 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
113112, 42mulcld 8092 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝐶 · 𝐵) ∈ ℂ)
114113fmpttd 5734 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 ↦ (𝐶 · 𝐵)):𝐴⟶ℂ)
115114adantr 276 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴 ↦ (𝐶 · 𝐵)):𝐴⟶ℂ)
116115ffvelcdmda 5714 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑚) ∈ ℂ)
117 fvco3 5649 . . . . . . . . 9 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑛)))
11825, 117sylan 283 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑛)))
119110, 18, 111, 116, 118fsum3 11640 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴)))
120 fveq2 5575 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
12142fmpttd 5734 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
122121adantr 276 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
123122ffvelcdmda 5714 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
124 fvco3 5649 . . . . . . . . . 10 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
12525, 124sylan 283 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
126120, 18, 111, 123, 125fsum3 11640 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴)))
127126oveq2d 5959 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐶 · Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚)) = (𝐶 · (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴))))
128109, 119, 1273eqtr4rd 2248 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐶 · Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚)) = Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑚))
129 sumfct 11627 . . . . . . . . 9 (∀𝑘𝐴 𝐵 ∈ ℂ → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵)
13043, 129syl 14 . . . . . . . 8 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵)
131130oveq2d 5959 . . . . . . 7 (𝜑 → (𝐶 · Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚)) = (𝐶 · Σ𝑘𝐴 𝐵))
132131adantr 276 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐶 · Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚)) = (𝐶 · Σ𝑘𝐴 𝐵))
133113ralrimiva 2578 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 (𝐶 · 𝐵) ∈ ℂ)
134 sumfct 11627 . . . . . . . 8 (∀𝑘𝐴 (𝐶 · 𝐵) ∈ ℂ → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑚) = Σ𝑘𝐴 (𝐶 · 𝐵))
135133, 134syl 14 . . . . . . 7 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑚) = Σ𝑘𝐴 (𝐶 · 𝐵))
136135adantr 276 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑚) = Σ𝑘𝐴 (𝐶 · 𝐵))
137128, 132, 1363eqtr3d 2245 . . . . 5 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵))
138137expr 375 . . . 4 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵)))
139138exlimdv 1841 . . 3 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵)))
140139expimpd 363 . 2 (𝜑 → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵)))
141 fsummulc2.1 . . 3 (𝜑𝐴 ∈ Fin)
142 fz1f1o 11628 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
143141, 142syl 14 . 2 (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
14411, 140, 143mpjaod 719 1 (𝜑 → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835  w3a 980   = wceq 1372  wex 1514  wcel 2175  wral 2483  csb 3092  c0 3459  ifcif 3570   class class class wbr 4043  cmpt 4104  ccom 4678  wf 5266  1-1-ontowf1o 5269  cfv 5270  (class class class)co 5943  Fincfn 6826  cc 7922  0cc0 7924  1c1 7925   + caddc 7927   · cmul 7929  cle 8107  cn 9035  cz 9371  cuz 9647  ...cfz 10129  seqcseq 10590  chash 10918  Σcsu 11606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-frec 6476  df-1o 6501  df-oadd 6505  df-er 6619  df-en 6827  df-dom 6828  df-fin 6829  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-fz 10130  df-fzo 10264  df-seqfrec 10591  df-exp 10682  df-ihash 10919  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-clim 11532  df-sumdc 11607
This theorem is referenced by:  fsummulc1  11702  fsumneg  11704  fsum2mul  11706  cvgratnnlemabsle  11780  mertensabs  11790  eirraplem  12030  fsumdvdsmul  15405
  Copyright terms: Public domain W3C validator