ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsummulc2 GIF version

Theorem fsummulc2 11954
Description: A finite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsummulc2.1 (𝜑𝐴 ∈ Fin)
fsummulc2.2 (𝜑𝐶 ∈ ℂ)
fsummulc2.3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsummulc2 (𝜑 → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsummulc2
Dummy variables 𝑓 𝑚 𝑛 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsummulc2.2 . . . 4 (𝜑𝐶 ∈ ℂ)
21mul01d 8535 . . 3 (𝜑 → (𝐶 · 0) = 0)
3 sumeq1 11861 . . . . . 6 (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
4 sum0 11894 . . . . . 6 Σ𝑘 ∈ ∅ 𝐵 = 0
53, 4eqtrdi 2278 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 𝐵 = 0)
65oveq2d 6016 . . . 4 (𝐴 = ∅ → (𝐶 · Σ𝑘𝐴 𝐵) = (𝐶 · 0))
7 sumeq1 11861 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 (𝐶 · 𝐵) = Σ𝑘 ∈ ∅ (𝐶 · 𝐵))
8 sum0 11894 . . . . 5 Σ𝑘 ∈ ∅ (𝐶 · 𝐵) = 0
97, 8eqtrdi 2278 . . . 4 (𝐴 = ∅ → Σ𝑘𝐴 (𝐶 · 𝐵) = 0)
106, 9eqeq12d 2244 . . 3 (𝐴 = ∅ → ((𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵) ↔ (𝐶 · 0) = 0))
112, 10syl5ibrcom 157 . 2 (𝜑 → (𝐴 = ∅ → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵)))
12 addcl 8120 . . . . . . . . 9 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + 𝑣) ∈ ℂ)
1312adantl 277 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 + 𝑣) ∈ ℂ)
141ad2antrr 488 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐶 ∈ ℂ)
15 simprl 529 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑢 ∈ ℂ)
16 simprr 531 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑣 ∈ ℂ)
1714, 15, 16adddid 8167 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐶 · (𝑢 + 𝑣)) = ((𝐶 · 𝑢) + (𝐶 · 𝑣)))
18 simprl 529 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
19 nnuz 9754 . . . . . . . . 9 ℕ = (ℤ‘1)
2018, 19eleqtrdi 2322 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
21 elnnuz 9755 . . . . . . . . . . . 12 (𝑢 ∈ ℕ ↔ 𝑢 ∈ (ℤ‘1))
2221biimpri 133 . . . . . . . . . . 11 (𝑢 ∈ (ℤ‘1) → 𝑢 ∈ ℕ)
2322adantl 277 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → 𝑢 ∈ ℕ)
24 f1of 5571 . . . . . . . . . . . . . . 15 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
2524ad2antll 491 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
2625ad2antrr 488 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
27 1zzd 9469 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → 1 ∈ ℤ)
2818ad2antrr 488 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (♯‘𝐴) ∈ ℕ)
2928nnzd 9564 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (♯‘𝐴) ∈ ℤ)
30 eluzelz 9727 . . . . . . . . . . . . . . . 16 (𝑢 ∈ (ℤ‘1) → 𝑢 ∈ ℤ)
3130ad2antlr 489 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → 𝑢 ∈ ℤ)
3227, 29, 313jca 1201 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (1 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑢 ∈ ℤ))
33 eluzle 9730 . . . . . . . . . . . . . . . 16 (𝑢 ∈ (ℤ‘1) → 1 ≤ 𝑢)
3433ad2antlr 489 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → 1 ≤ 𝑢)
35 simpr 110 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → 𝑢 ≤ (♯‘𝐴))
3634, 35jca 306 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (1 ≤ 𝑢𝑢 ≤ (♯‘𝐴)))
37 elfz2 10207 . . . . . . . . . . . . . 14 (𝑢 ∈ (1...(♯‘𝐴)) ↔ ((1 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑢 ∈ ℤ) ∧ (1 ≤ 𝑢𝑢 ≤ (♯‘𝐴))))
3832, 36, 37sylanbrc 417 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → 𝑢 ∈ (1...(♯‘𝐴)))
39 fvco3 5704 . . . . . . . . . . . . 13 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑢 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢) = ((𝑘𝐴𝐵)‘(𝑓𝑢)))
4026, 38, 39syl2anc 411 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢) = ((𝑘𝐴𝐵)‘(𝑓𝑢)))
4126, 38ffvelcdmd 5770 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (𝑓𝑢) ∈ 𝐴)
42 fsummulc2.3 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
4342ralrimiva 2603 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
4443ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
45 nfcsb1v 3157 . . . . . . . . . . . . . . . . 17 𝑘(𝑓𝑢) / 𝑘𝐵
4645nfel1 2383 . . . . . . . . . . . . . . . 16 𝑘(𝑓𝑢) / 𝑘𝐵 ∈ ℂ
47 csbeq1a 3133 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑓𝑢) → 𝐵 = (𝑓𝑢) / 𝑘𝐵)
4847eleq1d 2298 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑓𝑢) → (𝐵 ∈ ℂ ↔ (𝑓𝑢) / 𝑘𝐵 ∈ ℂ))
4946, 48rspc 2901 . . . . . . . . . . . . . . 15 ((𝑓𝑢) ∈ 𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → (𝑓𝑢) / 𝑘𝐵 ∈ ℂ))
5041, 44, 49sylc 62 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (𝑓𝑢) / 𝑘𝐵 ∈ ℂ)
51 eqid 2229 . . . . . . . . . . . . . . 15 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
5251fvmpts 5711 . . . . . . . . . . . . . 14 (((𝑓𝑢) ∈ 𝐴(𝑓𝑢) / 𝑘𝐵 ∈ ℂ) → ((𝑘𝐴𝐵)‘(𝑓𝑢)) = (𝑓𝑢) / 𝑘𝐵)
5341, 50, 52syl2anc 411 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → ((𝑘𝐴𝐵)‘(𝑓𝑢)) = (𝑓𝑢) / 𝑘𝐵)
5453, 50eqeltrd 2306 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → ((𝑘𝐴𝐵)‘(𝑓𝑢)) ∈ ℂ)
5540, 54eqeltrd 2306 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢) ∈ ℂ)
56 0cnd 8135 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ≤ (♯‘𝐴)) → 0 ∈ ℂ)
5723nnzd 9564 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → 𝑢 ∈ ℤ)
5818adantr 276 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → (♯‘𝐴) ∈ ℕ)
5958nnzd 9564 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → (♯‘𝐴) ∈ ℤ)
60 zdcle 9519 . . . . . . . . . . . 12 ((𝑢 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → DECID 𝑢 ≤ (♯‘𝐴))
6157, 59, 60syl2anc 411 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → DECID 𝑢 ≤ (♯‘𝐴))
6255, 56, 61ifcldadc 3632 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0) ∈ ℂ)
63 breq1 4085 . . . . . . . . . . . 12 (𝑛 = 𝑢 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑢 ≤ (♯‘𝐴)))
64 fveq2 5626 . . . . . . . . . . . 12 (𝑛 = 𝑢 → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢))
6563, 64ifbieq1d 3625 . . . . . . . . . . 11 (𝑛 = 𝑢 → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0) = if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0))
66 eqid 2229 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0))
6765, 66fvmptg 5709 . . . . . . . . . 10 ((𝑢 ∈ ℕ ∧ if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0))‘𝑢) = if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0))
6823, 62, 67syl2anc 411 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0))‘𝑢) = if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0))
6968, 62eqeltrd 2306 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0))‘𝑢) ∈ ℂ)
70 csbov2g 6042 . . . . . . . . . . . 12 ((𝑓𝑢) ∈ 𝐴(𝑓𝑢) / 𝑘(𝐶 · 𝐵) = (𝐶 · (𝑓𝑢) / 𝑘𝐵))
7141, 70syl 14 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (𝑓𝑢) / 𝑘(𝐶 · 𝐵) = (𝐶 · (𝑓𝑢) / 𝑘𝐵))
7235iftrued 3609 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0) = (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢))
73 fvco3 5704 . . . . . . . . . . . . 13 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑢 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢) = ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑢)))
7426, 38, 73syl2anc 411 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢) = ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑢)))
751ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → 𝐶 ∈ ℂ)
7675, 50mulcld 8163 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (𝐶 · (𝑓𝑢) / 𝑘𝐵) ∈ ℂ)
7771, 76eqeltrd 2306 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (𝑓𝑢) / 𝑘(𝐶 · 𝐵) ∈ ℂ)
78 eqid 2229 . . . . . . . . . . . . . 14 (𝑘𝐴 ↦ (𝐶 · 𝐵)) = (𝑘𝐴 ↦ (𝐶 · 𝐵))
7978fvmpts 5711 . . . . . . . . . . . . 13 (((𝑓𝑢) ∈ 𝐴(𝑓𝑢) / 𝑘(𝐶 · 𝐵) ∈ ℂ) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑢)) = (𝑓𝑢) / 𝑘(𝐶 · 𝐵))
8041, 77, 79syl2anc 411 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑢)) = (𝑓𝑢) / 𝑘(𝐶 · 𝐵))
8172, 74, 803eqtrd 2266 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0) = (𝑓𝑢) / 𝑘(𝐶 · 𝐵))
8235iftrued 3609 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0) = (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢))
8382, 40, 533eqtrd 2266 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0) = (𝑓𝑢) / 𝑘𝐵)
8483oveq2d 6016 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (𝐶 · if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0)) = (𝐶 · (𝑓𝑢) / 𝑘𝐵))
8571, 81, 843eqtr4d 2272 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0) = (𝐶 · if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0)))
861ad3antrrr 492 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ≤ (♯‘𝐴)) → 𝐶 ∈ ℂ)
8786mul01d 8535 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ≤ (♯‘𝐴)) → (𝐶 · 0) = 0)
88 simpr 110 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ≤ (♯‘𝐴)) → ¬ 𝑢 ≤ (♯‘𝐴))
8988iffalsed 3612 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ≤ (♯‘𝐴)) → if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0) = 0)
9089oveq2d 6016 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ≤ (♯‘𝐴)) → (𝐶 · if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0)) = (𝐶 · 0))
9188iffalsed 3612 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ≤ (♯‘𝐴)) → if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0) = 0)
9287, 90, 913eqtr4rd 2273 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ≤ (♯‘𝐴)) → if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0) = (𝐶 · if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0)))
93 exmiddc 841 . . . . . . . . . . 11 (DECID 𝑢 ≤ (♯‘𝐴) → (𝑢 ≤ (♯‘𝐴) ∨ ¬ 𝑢 ≤ (♯‘𝐴)))
9461, 93syl 14 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → (𝑢 ≤ (♯‘𝐴) ∨ ¬ 𝑢 ≤ (♯‘𝐴)))
9585, 92, 94mpjaodan 803 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0) = (𝐶 · if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0)))
9680, 77eqeltrd 2306 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑢)) ∈ ℂ)
9774, 96eqeltrd 2306 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ≤ (♯‘𝐴)) → (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢) ∈ ℂ)
9897, 56, 61ifcldadc 3632 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0) ∈ ℂ)
99 fveq2 5626 . . . . . . . . . . . 12 (𝑛 = 𝑢 → (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛) = (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢))
10063, 99ifbieq1d 3625 . . . . . . . . . . 11 (𝑛 = 𝑢 → if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛), 0) = if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0))
101 eqid 2229 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛), 0))
102100, 101fvmptg 5709 . . . . . . . . . 10 ((𝑢 ∈ ℕ ∧ if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛), 0))‘𝑢) = if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0))
10323, 98, 102syl2anc 411 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛), 0))‘𝑢) = if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0))
10468oveq2d 6016 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → (𝐶 · ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0))‘𝑢)) = (𝐶 · if(𝑢 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑢), 0)))
10595, 103, 1043eqtr4d 2272 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑢 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛), 0))‘𝑢) = (𝐶 · ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0))‘𝑢)))
106 mulcl 8122 . . . . . . . . 9 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ)
107106adantl 277 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 · 𝑣) ∈ ℂ)
1081adantr 276 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝐶 ∈ ℂ)
10913, 17, 20, 69, 105, 107, 108seq3distr 10749 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴)) = (𝐶 · (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴))))
110 fveq2 5626 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑚) = ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑛)))
111 simprr 531 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
1121adantr 276 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
113112, 42mulcld 8163 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝐶 · 𝐵) ∈ ℂ)
114113fmpttd 5789 . . . . . . . . . 10 (𝜑 → (𝑘𝐴 ↦ (𝐶 · 𝐵)):𝐴⟶ℂ)
115114adantr 276 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴 ↦ (𝐶 · 𝐵)):𝐴⟶ℂ)
116115ffvelcdmda 5769 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑚) ∈ ℂ)
117 fvco3 5704 . . . . . . . . 9 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑛)))
11825, 117sylan 283 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛) = ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘(𝑓𝑛)))
119110, 18, 111, 116, 118fsum3 11893 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴)))
120 fveq2 5626 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
12142fmpttd 5789 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
122121adantr 276 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
123122ffvelcdmda 5769 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
124 fvco3 5704 . . . . . . . . . 10 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
12525, 124sylan 283 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛) = ((𝑘𝐴𝐵)‘(𝑓𝑛)))
126120, 18, 111, 123, 125fsum3 11893 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴)))
127126oveq2d 6016 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐶 · Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚)) = (𝐶 · (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴))))
128109, 119, 1273eqtr4rd 2273 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐶 · Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚)) = Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑚))
129 sumfct 11880 . . . . . . . . 9 (∀𝑘𝐴 𝐵 ∈ ℂ → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵)
13043, 129syl 14 . . . . . . . 8 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵)
131130oveq2d 6016 . . . . . . 7 (𝜑 → (𝐶 · Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚)) = (𝐶 · Σ𝑘𝐴 𝐵))
132131adantr 276 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐶 · Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚)) = (𝐶 · Σ𝑘𝐴 𝐵))
133113ralrimiva 2603 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 (𝐶 · 𝐵) ∈ ℂ)
134 sumfct 11880 . . . . . . . 8 (∀𝑘𝐴 (𝐶 · 𝐵) ∈ ℂ → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑚) = Σ𝑘𝐴 (𝐶 · 𝐵))
135133, 134syl 14 . . . . . . 7 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑚) = Σ𝑘𝐴 (𝐶 · 𝐵))
136135adantr 276 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴 ↦ (𝐶 · 𝐵))‘𝑚) = Σ𝑘𝐴 (𝐶 · 𝐵))
137128, 132, 1363eqtr3d 2270 . . . . 5 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵))
138137expr 375 . . . 4 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵)))
139138exlimdv 1865 . . 3 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵)))
140139expimpd 363 . 2 (𝜑 → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵)))
141 fsummulc2.1 . . 3 (𝜑𝐴 ∈ Fin)
142 fz1f1o 11881 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
143141, 142syl 14 . 2 (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
14411, 140, 143mpjaod 723 1 (𝜑 → (𝐶 · Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐶 · 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839  w3a 1002   = wceq 1395  wex 1538  wcel 2200  wral 2508  csb 3124  c0 3491  ifcif 3602   class class class wbr 4082  cmpt 4144  ccom 4722  wf 5313  1-1-ontowf1o 5316  cfv 5317  (class class class)co 6000  Fincfn 6885  cc 7993  0cc0 7995  1c1 7996   + caddc 7998   · cmul 8000  cle 8178  cn 9106  cz 9442  cuz 9718  ...cfz 10200  seqcseq 10664  chash 10992  Σcsu 11859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-ihash 10993  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-sumdc 11860
This theorem is referenced by:  fsummulc1  11955  fsumneg  11957  fsum2mul  11959  cvgratnnlemabsle  12033  mertensabs  12043  eirraplem  12283  fsumdvdsmul  15659
  Copyright terms: Public domain W3C validator