| Step | Hyp | Ref
| Expression |
| 1 | | fsummulc2.2 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 2 | 1 | mul01d 8419 |
. . 3
⊢ (𝜑 → (𝐶 · 0) = 0) |
| 3 | | sumeq1 11520 |
. . . . . 6
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵) |
| 4 | | sum0 11553 |
. . . . . 6
⊢
Σ𝑘 ∈
∅ 𝐵 =
0 |
| 5 | 3, 4 | eqtrdi 2245 |
. . . . 5
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 𝐵 = 0) |
| 6 | 5 | oveq2d 5938 |
. . . 4
⊢ (𝐴 = ∅ → (𝐶 · Σ𝑘 ∈ 𝐴 𝐵) = (𝐶 · 0)) |
| 7 | | sumeq1 11520 |
. . . . 5
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵) = Σ𝑘 ∈ ∅ (𝐶 · 𝐵)) |
| 8 | | sum0 11553 |
. . . . 5
⊢
Σ𝑘 ∈
∅ (𝐶 · 𝐵) = 0 |
| 9 | 7, 8 | eqtrdi 2245 |
. . . 4
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵) = 0) |
| 10 | 6, 9 | eqeq12d 2211 |
. . 3
⊢ (𝐴 = ∅ → ((𝐶 · Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵) ↔ (𝐶 · 0) = 0)) |
| 11 | 2, 10 | syl5ibrcom 157 |
. 2
⊢ (𝜑 → (𝐴 = ∅ → (𝐶 · Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵))) |
| 12 | | addcl 8004 |
. . . . . . . . 9
⊢ ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + 𝑣) ∈ ℂ) |
| 13 | 12 | adantl 277 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 + 𝑣) ∈ ℂ) |
| 14 | 1 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐶 ∈ ℂ) |
| 15 | | simprl 529 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑢 ∈ ℂ) |
| 16 | | simprr 531 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑣 ∈ ℂ) |
| 17 | 14, 15, 16 | adddid 8051 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐶 · (𝑢 + 𝑣)) = ((𝐶 · 𝑢) + (𝐶 · 𝑣))) |
| 18 | | simprl 529 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈
ℕ) |
| 19 | | nnuz 9637 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
| 20 | 18, 19 | eleqtrdi 2289 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (♯‘𝐴) ∈
(ℤ≥‘1)) |
| 21 | | elnnuz 9638 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ ℕ ↔ 𝑢 ∈
(ℤ≥‘1)) |
| 22 | 21 | biimpri 133 |
. . . . . . . . . . 11
⊢ (𝑢 ∈
(ℤ≥‘1) → 𝑢 ∈ ℕ) |
| 23 | 22 | adantl 277 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
→ 𝑢 ∈
ℕ) |
| 24 | | f1of 5504 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → 𝑓:(1...(♯‘𝐴))⟶𝐴) |
| 25 | 24 | ad2antll 491 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴) |
| 26 | 25 | ad2antrr 488 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
𝑓:(1...(♯‘𝐴))⟶𝐴) |
| 27 | | 1zzd 9353 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) → 1
∈ ℤ) |
| 28 | 18 | ad2antrr 488 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
(♯‘𝐴) ∈
ℕ) |
| 29 | 28 | nnzd 9447 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
(♯‘𝐴) ∈
ℤ) |
| 30 | | eluzelz 9610 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈
(ℤ≥‘1) → 𝑢 ∈ ℤ) |
| 31 | 30 | ad2antlr 489 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
𝑢 ∈
ℤ) |
| 32 | 27, 29, 31 | 3jca 1179 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
(1 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑢 ∈ ℤ)) |
| 33 | | eluzle 9613 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈
(ℤ≥‘1) → 1 ≤ 𝑢) |
| 34 | 33 | ad2antlr 489 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) → 1
≤ 𝑢) |
| 35 | | simpr 110 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
𝑢 ≤ (♯‘𝐴)) |
| 36 | 34, 35 | jca 306 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
(1 ≤ 𝑢 ∧ 𝑢 ≤ (♯‘𝐴))) |
| 37 | | elfz2 10090 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈
(1...(♯‘𝐴))
↔ ((1 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑢 ∈ ℤ) ∧ (1 ≤ 𝑢 ∧ 𝑢 ≤ (♯‘𝐴)))) |
| 38 | 32, 36, 37 | sylanbrc 417 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
𝑢 ∈
(1...(♯‘𝐴))) |
| 39 | | fvco3 5632 |
. . . . . . . . . . . . 13
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑢 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑢) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑢))) |
| 40 | 26, 38, 39 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
(((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑢) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑢))) |
| 41 | 26, 38 | ffvelcdmd 5698 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
(𝑓‘𝑢) ∈ 𝐴) |
| 42 | | fsummulc2.3 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 43 | 42 | ralrimiva 2570 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 44 | 43 | ad3antrrr 492 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 45 | | nfcsb1v 3117 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘⦋(𝑓‘𝑢) / 𝑘⦌𝐵 |
| 46 | 45 | nfel1 2350 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘⦋(𝑓‘𝑢) / 𝑘⦌𝐵 ∈ ℂ |
| 47 | | csbeq1a 3093 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = (𝑓‘𝑢) → 𝐵 = ⦋(𝑓‘𝑢) / 𝑘⦌𝐵) |
| 48 | 47 | eleq1d 2265 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑓‘𝑢) → (𝐵 ∈ ℂ ↔ ⦋(𝑓‘𝑢) / 𝑘⦌𝐵 ∈ ℂ)) |
| 49 | 46, 48 | rspc 2862 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓‘𝑢) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋(𝑓‘𝑢) / 𝑘⦌𝐵 ∈ ℂ)) |
| 50 | 41, 44, 49 | sylc 62 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
⦋(𝑓‘𝑢) / 𝑘⦌𝐵 ∈ ℂ) |
| 51 | | eqid 2196 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) |
| 52 | 51 | fvmpts 5639 |
. . . . . . . . . . . . . 14
⊢ (((𝑓‘𝑢) ∈ 𝐴 ∧ ⦋(𝑓‘𝑢) / 𝑘⦌𝐵 ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑢)) = ⦋(𝑓‘𝑢) / 𝑘⦌𝐵) |
| 53 | 41, 50, 52 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑢)) = ⦋(𝑓‘𝑢) / 𝑘⦌𝐵) |
| 54 | 53, 50 | eqeltrd 2273 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑢)) ∈ ℂ) |
| 55 | 40, 54 | eqeltrd 2273 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
(((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑢) ∈ ℂ) |
| 56 | | 0cnd 8019 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ ¬ 𝑢 ≤
(♯‘𝐴)) → 0
∈ ℂ) |
| 57 | 23 | nnzd 9447 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
→ 𝑢 ∈
ℤ) |
| 58 | 18 | adantr 276 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
→ (♯‘𝐴)
∈ ℕ) |
| 59 | 58 | nnzd 9447 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
→ (♯‘𝐴)
∈ ℤ) |
| 60 | | zdcle 9402 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ ℤ ∧
(♯‘𝐴) ∈
ℤ) → DECID 𝑢 ≤ (♯‘𝐴)) |
| 61 | 57, 59, 60 | syl2anc 411 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
→ DECID 𝑢 ≤ (♯‘𝐴)) |
| 62 | 55, 56, 61 | ifcldadc 3590 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
→ if(𝑢 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑢), 0) ∈ ℂ) |
| 63 | | breq1 4036 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑢 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑢 ≤ (♯‘𝐴))) |
| 64 | | fveq2 5558 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑢 → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) = (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑢)) |
| 65 | 63, 64 | ifbieq1d 3583 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑢 → if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛), 0) = if(𝑢 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑢), 0)) |
| 66 | | eqid 2196 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛), 0)) |
| 67 | 65, 66 | fvmptg 5637 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ ℕ ∧ if(𝑢 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑢), 0) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛), 0))‘𝑢) = if(𝑢 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑢), 0)) |
| 68 | 23, 62, 67 | syl2anc 411 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
→ ((𝑛 ∈ ℕ
↦ if(𝑛 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛), 0))‘𝑢) = if(𝑢 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑢), 0)) |
| 69 | 68, 62 | eqeltrd 2273 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
→ ((𝑛 ∈ ℕ
↦ if(𝑛 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛), 0))‘𝑢) ∈ ℂ) |
| 70 | | csbov2g 5963 |
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑢) ∈ 𝐴 → ⦋(𝑓‘𝑢) / 𝑘⦌(𝐶 · 𝐵) = (𝐶 · ⦋(𝑓‘𝑢) / 𝑘⦌𝐵)) |
| 71 | 41, 70 | syl 14 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
⦋(𝑓‘𝑢) / 𝑘⦌(𝐶 · 𝐵) = (𝐶 · ⦋(𝑓‘𝑢) / 𝑘⦌𝐵)) |
| 72 | 35 | iftrued 3568 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
if(𝑢 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0) = (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢)) |
| 73 | | fvco3 5632 |
. . . . . . . . . . . . 13
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑢 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢) = ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘(𝑓‘𝑢))) |
| 74 | 26, 38, 73 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
(((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢) = ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘(𝑓‘𝑢))) |
| 75 | 1 | ad3antrrr 492 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
𝐶 ∈
ℂ) |
| 76 | 75, 50 | mulcld 8047 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
(𝐶 ·
⦋(𝑓‘𝑢) / 𝑘⦌𝐵) ∈ ℂ) |
| 77 | 71, 76 | eqeltrd 2273 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
⦋(𝑓‘𝑢) / 𝑘⦌(𝐶 · 𝐵) ∈ ℂ) |
| 78 | | eqid 2196 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) = (𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) |
| 79 | 78 | fvmpts 5639 |
. . . . . . . . . . . . 13
⊢ (((𝑓‘𝑢) ∈ 𝐴 ∧ ⦋(𝑓‘𝑢) / 𝑘⦌(𝐶 · 𝐵) ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘(𝑓‘𝑢)) = ⦋(𝑓‘𝑢) / 𝑘⦌(𝐶 · 𝐵)) |
| 80 | 41, 77, 79 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘(𝑓‘𝑢)) = ⦋(𝑓‘𝑢) / 𝑘⦌(𝐶 · 𝐵)) |
| 81 | 72, 74, 80 | 3eqtrd 2233 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
if(𝑢 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0) = ⦋(𝑓‘𝑢) / 𝑘⦌(𝐶 · 𝐵)) |
| 82 | 35 | iftrued 3568 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
if(𝑢 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑢), 0) = (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑢)) |
| 83 | 82, 40, 53 | 3eqtrd 2233 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
if(𝑢 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑢), 0) = ⦋(𝑓‘𝑢) / 𝑘⦌𝐵) |
| 84 | 83 | oveq2d 5938 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
(𝐶 · if(𝑢 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑢), 0)) = (𝐶 · ⦋(𝑓‘𝑢) / 𝑘⦌𝐵)) |
| 85 | 71, 81, 84 | 3eqtr4d 2239 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
if(𝑢 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0) = (𝐶 · if(𝑢 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑢), 0))) |
| 86 | 1 | ad3antrrr 492 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ ¬ 𝑢 ≤
(♯‘𝐴)) →
𝐶 ∈
ℂ) |
| 87 | 86 | mul01d 8419 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ ¬ 𝑢 ≤
(♯‘𝐴)) →
(𝐶 · 0) =
0) |
| 88 | | simpr 110 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ ¬ 𝑢 ≤
(♯‘𝐴)) →
¬ 𝑢 ≤
(♯‘𝐴)) |
| 89 | 88 | iffalsed 3571 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ ¬ 𝑢 ≤
(♯‘𝐴)) →
if(𝑢 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑢), 0) = 0) |
| 90 | 89 | oveq2d 5938 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ ¬ 𝑢 ≤
(♯‘𝐴)) →
(𝐶 · if(𝑢 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑢), 0)) = (𝐶 · 0)) |
| 91 | 88 | iffalsed 3571 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ ¬ 𝑢 ≤
(♯‘𝐴)) →
if(𝑢 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0) = 0) |
| 92 | 87, 90, 91 | 3eqtr4rd 2240 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ ¬ 𝑢 ≤
(♯‘𝐴)) →
if(𝑢 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0) = (𝐶 · if(𝑢 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑢), 0))) |
| 93 | | exmiddc 837 |
. . . . . . . . . . 11
⊢
(DECID 𝑢 ≤ (♯‘𝐴) → (𝑢 ≤ (♯‘𝐴) ∨ ¬ 𝑢 ≤ (♯‘𝐴))) |
| 94 | 61, 93 | syl 14 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
→ (𝑢 ≤
(♯‘𝐴) ∨
¬ 𝑢 ≤
(♯‘𝐴))) |
| 95 | 85, 92, 94 | mpjaodan 799 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
→ if(𝑢 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0) = (𝐶 · if(𝑢 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑢), 0))) |
| 96 | 80, 77 | eqeltrd 2273 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘(𝑓‘𝑢)) ∈ ℂ) |
| 97 | 74, 96 | eqeltrd 2273 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ≤
(♯‘𝐴)) →
(((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢) ∈ ℂ) |
| 98 | 97, 56, 61 | ifcldadc 3590 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
→ if(𝑢 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0) ∈ ℂ) |
| 99 | | fveq2 5558 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑢 → (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛) = (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢)) |
| 100 | 63, 99 | ifbieq1d 3583 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑢 → if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛), 0) = if(𝑢 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0)) |
| 101 | | eqid 2196 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛), 0)) |
| 102 | 100, 101 | fvmptg 5637 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ ℕ ∧ if(𝑢 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛), 0))‘𝑢) = if(𝑢 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0)) |
| 103 | 23, 98, 102 | syl2anc 411 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
→ ((𝑛 ∈ ℕ
↦ if(𝑛 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛), 0))‘𝑢) = if(𝑢 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑢), 0)) |
| 104 | 68 | oveq2d 5938 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
→ (𝐶 · ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛), 0))‘𝑢)) = (𝐶 · if(𝑢 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑢), 0))) |
| 105 | 95, 103, 104 | 3eqtr4d 2239 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑢 ∈ (ℤ≥‘1))
→ ((𝑛 ∈ ℕ
↦ if(𝑛 ≤
(♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛), 0))‘𝑢) = (𝐶 · ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛), 0))‘𝑢))) |
| 106 | | mulcl 8006 |
. . . . . . . . 9
⊢ ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ) |
| 107 | 106 | adantl 277 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 · 𝑣) ∈ ℂ) |
| 108 | 1 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝐶 ∈ ℂ) |
| 109 | 13, 17, 20, 69, 105, 107, 108 | seq3distr 10624 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴)) = (𝐶 · (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴)))) |
| 110 | | fveq2 5558 |
. . . . . . . 8
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘𝑚) = ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘(𝑓‘𝑛))) |
| 111 | | simprr 531 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) |
| 112 | 1 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 113 | 112, 42 | mulcld 8047 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶 · 𝐵) ∈ ℂ) |
| 114 | 113 | fmpttd 5717 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)):𝐴⟶ℂ) |
| 115 | 114 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)):𝐴⟶ℂ) |
| 116 | 115 | ffvelcdmda 5697 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘𝑚) ∈ ℂ) |
| 117 | | fvco3 5632 |
. . . . . . . . 9
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘(𝑓‘𝑛))) |
| 118 | 25, 117 | sylan 283 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘(𝑓‘𝑛))) |
| 119 | 110, 18, 111, 116, 118 | fsum3 11552 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴))) |
| 120 | | fveq2 5558 |
. . . . . . . . 9
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
| 121 | 42 | fmpttd 5717 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
| 122 | 121 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
| 123 | 122 | ffvelcdmda 5697 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) ∈ ℂ) |
| 124 | | fvco3 5632 |
. . . . . . . . . 10
⊢ ((𝑓:(1...(♯‘𝐴))⟶𝐴 ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
| 125 | 25, 124 | sylan 283 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
| 126 | 120, 18, 111, 123, 125 | fsum3 11552 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴))) |
| 127 | 126 | oveq2d 5938 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝐶 · Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚)) = (𝐶 · (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛), 0)))‘(♯‘𝐴)))) |
| 128 | 109, 119,
127 | 3eqtr4rd 2240 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝐶 · Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚)) = Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘𝑚)) |
| 129 | | sumfct 11539 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
𝐴 𝐵 ∈ ℂ → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = Σ𝑘 ∈ 𝐴 𝐵) |
| 130 | 43, 129 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = Σ𝑘 ∈ 𝐴 𝐵) |
| 131 | 130 | oveq2d 5938 |
. . . . . . 7
⊢ (𝜑 → (𝐶 · Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚)) = (𝐶 · Σ𝑘 ∈ 𝐴 𝐵)) |
| 132 | 131 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝐶 · Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚)) = (𝐶 · Σ𝑘 ∈ 𝐴 𝐵)) |
| 133 | 113 | ralrimiva 2570 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 (𝐶 · 𝐵) ∈ ℂ) |
| 134 | | sumfct 11539 |
. . . . . . . 8
⊢
(∀𝑘 ∈
𝐴 (𝐶 · 𝐵) ∈ ℂ → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘𝑚) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵)) |
| 135 | 133, 134 | syl 14 |
. . . . . . 7
⊢ (𝜑 → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘𝑚) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵)) |
| 136 | 135 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐶 · 𝐵))‘𝑚) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵)) |
| 137 | 128, 132,
136 | 3eqtr3d 2237 |
. . . . 5
⊢ ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → (𝐶 · Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵)) |
| 138 | 137 | expr 375 |
. . . 4
⊢ ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → (𝐶 · Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵))) |
| 139 | 138 | exlimdv 1833 |
. . 3
⊢ ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) →
(∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → (𝐶 · Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵))) |
| 140 | 139 | expimpd 363 |
. 2
⊢ (𝜑 → (((♯‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → (𝐶 · Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵))) |
| 141 | | fsummulc2.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 142 | | fz1f1o 11540 |
. . 3
⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨
((♯‘𝐴) ∈
ℕ ∧ ∃𝑓
𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
| 143 | 141, 142 | syl 14 |
. 2
⊢ (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
| 144 | 11, 140, 143 | mpjaod 719 |
1
⊢ (𝜑 → (𝐶 · Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵)) |