ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqcyc GIF version

Theorem modqcyc 10345
Description: The modulo operation is periodic. (Contributed by Jim Kingdon, 21-Oct-2021.)
Assertion
Ref Expression
modqcyc (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵))

Proof of Theorem modqcyc
StepHypRef Expression
1 simpll 527 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝐴 ∈ ℚ)
2 zq 9615 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
32ad2antlr 489 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝑁 ∈ ℚ)
4 simprl 529 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝐵 ∈ ℚ)
5 qmulcl 9626 . . . . . 6 ((𝑁 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝑁 · 𝐵) ∈ ℚ)
63, 4, 5syl2anc 411 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝑁 · 𝐵) ∈ ℚ)
7 qaddcl 9624 . . . . 5 ((𝐴 ∈ ℚ ∧ (𝑁 · 𝐵) ∈ ℚ) → (𝐴 + (𝑁 · 𝐵)) ∈ ℚ)
81, 6, 7syl2anc 411 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐴 + (𝑁 · 𝐵)) ∈ ℚ)
9 simprr 531 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 0 < 𝐵)
10 modqval 10310 . . . 4 (((𝐴 + (𝑁 · 𝐵)) ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = ((𝐴 + (𝑁 · 𝐵)) − (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)))))
118, 4, 9, 10syl3anc 1238 . . 3 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = ((𝐴 + (𝑁 · 𝐵)) − (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)))))
12 qcn 9623 . . . . . . . . . . 11 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
131, 12syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝐴 ∈ ℂ)
14 qcn 9623 . . . . . . . . . . 11 ((𝑁 · 𝐵) ∈ ℚ → (𝑁 · 𝐵) ∈ ℂ)
156, 14syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝑁 · 𝐵) ∈ ℂ)
16 qcn 9623 . . . . . . . . . . 11 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
174, 16syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝐵 ∈ ℂ)
18 qre 9614 . . . . . . . . . . . 12 (𝐵 ∈ ℚ → 𝐵 ∈ ℝ)
194, 18syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ)
2019, 9gt0ap0d 8576 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝐵 # 0)
2113, 15, 17, 20divdirapd 8775 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) / 𝐵) = ((𝐴 / 𝐵) + ((𝑁 · 𝐵) / 𝐵)))
22 simplr 528 . . . . . . . . . . . 12 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝑁 ∈ ℤ)
2322zcnd 9365 . . . . . . . . . . 11 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝑁 ∈ ℂ)
2423, 17, 20divcanap4d 8742 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝑁 · 𝐵) / 𝐵) = 𝑁)
2524oveq2d 5885 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) + ((𝑁 · 𝐵) / 𝐵)) = ((𝐴 / 𝐵) + 𝑁))
2621, 25eqtrd 2210 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) / 𝐵) = ((𝐴 / 𝐵) + 𝑁))
2726fveq2d 5515 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)) = (⌊‘((𝐴 / 𝐵) + 𝑁)))
289gt0ne0d 8459 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝐵 ≠ 0)
29 qdivcl 9632 . . . . . . . . 9 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℚ)
301, 4, 28, 29syl3anc 1238 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐴 / 𝐵) ∈ ℚ)
31 flqaddz 10283 . . . . . . . 8 (((𝐴 / 𝐵) ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘((𝐴 / 𝐵) + 𝑁)) = ((⌊‘(𝐴 / 𝐵)) + 𝑁))
3230, 22, 31syl2anc 411 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (⌊‘((𝐴 / 𝐵) + 𝑁)) = ((⌊‘(𝐴 / 𝐵)) + 𝑁))
3327, 32eqtrd 2210 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)) = ((⌊‘(𝐴 / 𝐵)) + 𝑁))
3433oveq2d 5885 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵))) = (𝐵 · ((⌊‘(𝐴 / 𝐵)) + 𝑁)))
3530flqcld 10263 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (⌊‘(𝐴 / 𝐵)) ∈ ℤ)
3635zcnd 9365 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
3717, 36, 23adddid 7972 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐵 · ((⌊‘(𝐴 / 𝐵)) + 𝑁)) = ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝐵 · 𝑁)))
3817, 23mulcomd 7969 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐵 · 𝑁) = (𝑁 · 𝐵))
3938oveq2d 5885 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝐵 · 𝑁)) = ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵)))
4034, 37, 393eqtrd 2214 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵))) = ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵)))
4140oveq2d 5885 . . 3 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) − (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)))) = ((𝐴 + (𝑁 · 𝐵)) − ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵))))
4217, 36mulcld 7968 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℂ)
4313, 42, 15pnpcan2d 8296 . . 3 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) − ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵))) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
4411, 41, 433eqtrd 2214 . 2 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
45 modqval 10310 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
461, 4, 9, 45syl3anc 1238 . 2 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
4744, 46eqtr4d 2213 1 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wne 2347   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  0cc0 7802   + caddc 7805   · cmul 7807   < clt 7982  cmin 8118   / cdiv 8618  cz 9242  cq 9608  cfl 10254   mod cmo 10308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-n0 9166  df-z 9243  df-q 9609  df-rp 9641  df-fl 10256  df-mod 10309
This theorem is referenced by:  modqcyc2  10346  mulqaddmodid  10350  qnegmod  10355  modsumfzodifsn  10382  lgsdir2lem1  14096  lgsdir2lem5  14100
  Copyright terms: Public domain W3C validator