ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqcyc GIF version

Theorem modqcyc 10468
Description: The modulo operation is periodic. (Contributed by Jim Kingdon, 21-Oct-2021.)
Assertion
Ref Expression
modqcyc (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵))

Proof of Theorem modqcyc
StepHypRef Expression
1 simpll 527 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝐴 ∈ ℚ)
2 zq 9717 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
32ad2antlr 489 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝑁 ∈ ℚ)
4 simprl 529 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝐵 ∈ ℚ)
5 qmulcl 9728 . . . . . 6 ((𝑁 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝑁 · 𝐵) ∈ ℚ)
63, 4, 5syl2anc 411 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝑁 · 𝐵) ∈ ℚ)
7 qaddcl 9726 . . . . 5 ((𝐴 ∈ ℚ ∧ (𝑁 · 𝐵) ∈ ℚ) → (𝐴 + (𝑁 · 𝐵)) ∈ ℚ)
81, 6, 7syl2anc 411 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐴 + (𝑁 · 𝐵)) ∈ ℚ)
9 simprr 531 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 0 < 𝐵)
10 modqval 10433 . . . 4 (((𝐴 + (𝑁 · 𝐵)) ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = ((𝐴 + (𝑁 · 𝐵)) − (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)))))
118, 4, 9, 10syl3anc 1249 . . 3 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = ((𝐴 + (𝑁 · 𝐵)) − (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)))))
12 qcn 9725 . . . . . . . . . . 11 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
131, 12syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝐴 ∈ ℂ)
14 qcn 9725 . . . . . . . . . . 11 ((𝑁 · 𝐵) ∈ ℚ → (𝑁 · 𝐵) ∈ ℂ)
156, 14syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝑁 · 𝐵) ∈ ℂ)
16 qcn 9725 . . . . . . . . . . 11 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
174, 16syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝐵 ∈ ℂ)
18 qre 9716 . . . . . . . . . . . 12 (𝐵 ∈ ℚ → 𝐵 ∈ ℝ)
194, 18syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ)
2019, 9gt0ap0d 8673 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝐵 # 0)
2113, 15, 17, 20divdirapd 8873 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) / 𝐵) = ((𝐴 / 𝐵) + ((𝑁 · 𝐵) / 𝐵)))
22 simplr 528 . . . . . . . . . . . 12 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝑁 ∈ ℤ)
2322zcnd 9466 . . . . . . . . . . 11 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝑁 ∈ ℂ)
2423, 17, 20divcanap4d 8840 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝑁 · 𝐵) / 𝐵) = 𝑁)
2524oveq2d 5941 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) + ((𝑁 · 𝐵) / 𝐵)) = ((𝐴 / 𝐵) + 𝑁))
2621, 25eqtrd 2229 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) / 𝐵) = ((𝐴 / 𝐵) + 𝑁))
2726fveq2d 5565 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)) = (⌊‘((𝐴 / 𝐵) + 𝑁)))
289gt0ne0d 8556 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝐵 ≠ 0)
29 qdivcl 9734 . . . . . . . . 9 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℚ)
301, 4, 28, 29syl3anc 1249 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐴 / 𝐵) ∈ ℚ)
31 flqaddz 10404 . . . . . . . 8 (((𝐴 / 𝐵) ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘((𝐴 / 𝐵) + 𝑁)) = ((⌊‘(𝐴 / 𝐵)) + 𝑁))
3230, 22, 31syl2anc 411 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (⌊‘((𝐴 / 𝐵) + 𝑁)) = ((⌊‘(𝐴 / 𝐵)) + 𝑁))
3327, 32eqtrd 2229 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)) = ((⌊‘(𝐴 / 𝐵)) + 𝑁))
3433oveq2d 5941 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵))) = (𝐵 · ((⌊‘(𝐴 / 𝐵)) + 𝑁)))
3530flqcld 10384 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (⌊‘(𝐴 / 𝐵)) ∈ ℤ)
3635zcnd 9466 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
3717, 36, 23adddid 8068 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐵 · ((⌊‘(𝐴 / 𝐵)) + 𝑁)) = ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝐵 · 𝑁)))
3817, 23mulcomd 8065 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐵 · 𝑁) = (𝑁 · 𝐵))
3938oveq2d 5941 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝐵 · 𝑁)) = ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵)))
4034, 37, 393eqtrd 2233 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵))) = ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵)))
4140oveq2d 5941 . . 3 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) − (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)))) = ((𝐴 + (𝑁 · 𝐵)) − ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵))))
4217, 36mulcld 8064 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℂ)
4313, 42, 15pnpcan2d 8392 . . 3 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) − ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵))) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
4411, 41, 433eqtrd 2233 . 2 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
45 modqval 10433 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
461, 4, 9, 45syl3anc 1249 . 2 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
4744, 46eqtr4d 2232 1 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wne 2367   class class class wbr 4034  cfv 5259  (class class class)co 5925  cc 7894  cr 7895  0cc0 7896   + caddc 7899   · cmul 7901   < clt 8078  cmin 8214   / cdiv 8716  cz 9343  cq 9710  cfl 10375   mod cmo 10431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-n0 9267  df-z 9344  df-q 9711  df-rp 9746  df-fl 10377  df-mod 10432
This theorem is referenced by:  modqcyc2  10469  mulqaddmodid  10473  qnegmod  10478  modsumfzodifsn  10505  modxai  12610  wilthlem1  15300  lgsdir2lem1  15353  lgsdir2lem5  15357  lgseisenlem1  15395
  Copyright terms: Public domain W3C validator