ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqcyc GIF version

Theorem modqcyc 9915
Description: The modulo operation is periodic. (Contributed by Jim Kingdon, 21-Oct-2021.)
Assertion
Ref Expression
modqcyc (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵))

Proof of Theorem modqcyc
StepHypRef Expression
1 simpll 497 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝐴 ∈ ℚ)
2 zq 9210 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
32ad2antlr 474 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝑁 ∈ ℚ)
4 simprl 499 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝐵 ∈ ℚ)
5 qmulcl 9221 . . . . . 6 ((𝑁 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝑁 · 𝐵) ∈ ℚ)
63, 4, 5syl2anc 404 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝑁 · 𝐵) ∈ ℚ)
7 qaddcl 9219 . . . . 5 ((𝐴 ∈ ℚ ∧ (𝑁 · 𝐵) ∈ ℚ) → (𝐴 + (𝑁 · 𝐵)) ∈ ℚ)
81, 6, 7syl2anc 404 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐴 + (𝑁 · 𝐵)) ∈ ℚ)
9 simprr 500 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 0 < 𝐵)
10 modqval 9880 . . . 4 (((𝐴 + (𝑁 · 𝐵)) ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = ((𝐴 + (𝑁 · 𝐵)) − (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)))))
118, 4, 9, 10syl3anc 1181 . . 3 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = ((𝐴 + (𝑁 · 𝐵)) − (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)))))
12 qcn 9218 . . . . . . . . . . 11 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
131, 12syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝐴 ∈ ℂ)
14 qcn 9218 . . . . . . . . . . 11 ((𝑁 · 𝐵) ∈ ℚ → (𝑁 · 𝐵) ∈ ℂ)
156, 14syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝑁 · 𝐵) ∈ ℂ)
16 qcn 9218 . . . . . . . . . . 11 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
174, 16syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝐵 ∈ ℂ)
18 qre 9209 . . . . . . . . . . . 12 (𝐵 ∈ ℚ → 𝐵 ∈ ℝ)
194, 18syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ)
2019, 9gt0ap0d 8202 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝐵 # 0)
2113, 15, 17, 20divdirapd 8393 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) / 𝐵) = ((𝐴 / 𝐵) + ((𝑁 · 𝐵) / 𝐵)))
22 simplr 498 . . . . . . . . . . . 12 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝑁 ∈ ℤ)
2322zcnd 8968 . . . . . . . . . . 11 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝑁 ∈ ℂ)
2423, 17, 20divcanap4d 8360 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝑁 · 𝐵) / 𝐵) = 𝑁)
2524oveq2d 5706 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 / 𝐵) + ((𝑁 · 𝐵) / 𝐵)) = ((𝐴 / 𝐵) + 𝑁))
2621, 25eqtrd 2127 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) / 𝐵) = ((𝐴 / 𝐵) + 𝑁))
2726fveq2d 5344 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)) = (⌊‘((𝐴 / 𝐵) + 𝑁)))
289gt0ne0d 8087 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → 𝐵 ≠ 0)
29 qdivcl 9227 . . . . . . . . 9 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℚ)
301, 4, 28, 29syl3anc 1181 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐴 / 𝐵) ∈ ℚ)
31 flqaddz 9853 . . . . . . . 8 (((𝐴 / 𝐵) ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘((𝐴 / 𝐵) + 𝑁)) = ((⌊‘(𝐴 / 𝐵)) + 𝑁))
3230, 22, 31syl2anc 404 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (⌊‘((𝐴 / 𝐵) + 𝑁)) = ((⌊‘(𝐴 / 𝐵)) + 𝑁))
3327, 32eqtrd 2127 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)) = ((⌊‘(𝐴 / 𝐵)) + 𝑁))
3433oveq2d 5706 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵))) = (𝐵 · ((⌊‘(𝐴 / 𝐵)) + 𝑁)))
3530flqcld 9833 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (⌊‘(𝐴 / 𝐵)) ∈ ℤ)
3635zcnd 8968 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
3717, 36, 23adddid 7609 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐵 · ((⌊‘(𝐴 / 𝐵)) + 𝑁)) = ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝐵 · 𝑁)))
3817, 23mulcomd 7606 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐵 · 𝑁) = (𝑁 · 𝐵))
3938oveq2d 5706 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝐵 · 𝑁)) = ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵)))
4034, 37, 393eqtrd 2131 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵))) = ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵)))
4140oveq2d 5706 . . 3 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) − (𝐵 · (⌊‘((𝐴 + (𝑁 · 𝐵)) / 𝐵)))) = ((𝐴 + (𝑁 · 𝐵)) − ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵))))
4217, 36mulcld 7605 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℂ)
4313, 42, 15pnpcan2d 7928 . . 3 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) − ((𝐵 · (⌊‘(𝐴 / 𝐵))) + (𝑁 · 𝐵))) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
4411, 41, 433eqtrd 2131 . 2 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
45 modqval 9880 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
461, 4, 9, 45syl3anc 1181 . 2 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
4744, 46eqtr4d 2130 1 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1296  wcel 1445  wne 2262   class class class wbr 3867  cfv 5049  (class class class)co 5690  cc 7445  cr 7446  0cc0 7447   + caddc 7450   · cmul 7452   < clt 7619  cmin 7750   / cdiv 8236  cz 8848  cq 9203  cfl 9824   mod cmo 9878
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560  ax-arch 7561
This theorem depends on definitions:  df-bi 116  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-po 4147  df-iso 4148  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-n0 8772  df-z 8849  df-q 9204  df-rp 9234  df-fl 9826  df-mod 9879
This theorem is referenced by:  modqcyc2  9916  mulqaddmodid  9920  qnegmod  9925  modsumfzodifsn  9952
  Copyright terms: Public domain W3C validator