ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subdi GIF version

Theorem subdi 7926
Description: Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 18-Nov-2004.)
Assertion
Ref Expression
subdi ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶)))

Proof of Theorem subdi
StepHypRef Expression
1 simp1 944 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ)
2 simp3 946 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
3 subcl 7744 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶) ∈ ℂ)
433adant1 962 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶) ∈ ℂ)
51, 2, 4adddid 7575 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐶 + (𝐵𝐶))) = ((𝐴 · 𝐶) + (𝐴 · (𝐵𝐶))))
6 pncan3 7753 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 + (𝐵𝐶)) = 𝐵)
76ancoms 265 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 + (𝐵𝐶)) = 𝐵)
873adant1 962 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 + (𝐵𝐶)) = 𝐵)
98oveq2d 5684 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐶 + (𝐵𝐶))) = (𝐴 · 𝐵))
105, 9eqtr3d 2123 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐶) + (𝐴 · (𝐵𝐶))) = (𝐴 · 𝐵))
11 mulcl 7532 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
12113adant3 964 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
13 mulcl 7532 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) ∈ ℂ)
14133adant2 963 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) ∈ ℂ)
15 mulcl 7532 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝐵𝐶) ∈ ℂ) → (𝐴 · (𝐵𝐶)) ∈ ℂ)
163, 15sylan2 281 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → (𝐴 · (𝐵𝐶)) ∈ ℂ)
17163impb 1140 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵𝐶)) ∈ ℂ)
1812, 14, 17subaddd 7874 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 · 𝐵) − (𝐴 · 𝐶)) = (𝐴 · (𝐵𝐶)) ↔ ((𝐴 · 𝐶) + (𝐴 · (𝐵𝐶))) = (𝐴 · 𝐵)))
1910, 18mpbird 166 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) − (𝐴 · 𝐶)) = (𝐴 · (𝐵𝐶)))
2019eqcomd 2094 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 925   = wceq 1290  wcel 1439  (class class class)co 5668  cc 7411   + caddc 7416   · cmul 7418  cmin 7716
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-setind 4368  ax-resscn 7500  ax-1cn 7501  ax-icn 7503  ax-addcl 7504  ax-addrcl 7505  ax-mulcl 7506  ax-addcom 7508  ax-addass 7510  ax-distr 7512  ax-i2m1 7513  ax-0id 7516  ax-rnegex 7517  ax-cnre 7519
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2624  df-sbc 2844  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-br 3854  df-opab 3908  df-id 4131  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-iota 4995  df-fun 5032  df-fv 5038  df-riota 5624  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-sub 7718
This theorem is referenced by:  subdir  7927  subdii  7948  subdid  7955  expubnd  10075  subsq  10124  cos01bnd  11112  modmulconst  11169  odd2np1  11214  omoe  11237  omeo  11239  phiprmpw  11539
  Copyright terms: Public domain W3C validator