Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > subdi | GIF version |
Description: Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 18-Nov-2004.) |
Ref | Expression |
---|---|
subdi | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 − 𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 992 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ) | |
2 | simp3 994 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ) | |
3 | subcl 8118 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 − 𝐶) ∈ ℂ) | |
4 | 3 | 3adant1 1010 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 − 𝐶) ∈ ℂ) |
5 | 1, 2, 4 | adddid 7944 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐶 + (𝐵 − 𝐶))) = ((𝐴 · 𝐶) + (𝐴 · (𝐵 − 𝐶)))) |
6 | pncan3 8127 | . . . . . . 7 ⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 + (𝐵 − 𝐶)) = 𝐵) | |
7 | 6 | ancoms 266 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 + (𝐵 − 𝐶)) = 𝐵) |
8 | 7 | 3adant1 1010 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 + (𝐵 − 𝐶)) = 𝐵) |
9 | 8 | oveq2d 5869 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐶 + (𝐵 − 𝐶))) = (𝐴 · 𝐵)) |
10 | 5, 9 | eqtr3d 2205 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐶) + (𝐴 · (𝐵 − 𝐶))) = (𝐴 · 𝐵)) |
11 | mulcl 7901 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
12 | 11 | 3adant3 1012 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
13 | mulcl 7901 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) ∈ ℂ) | |
14 | 13 | 3adant2 1011 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) ∈ ℂ) |
15 | mulcl 7901 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 − 𝐶) ∈ ℂ) → (𝐴 · (𝐵 − 𝐶)) ∈ ℂ) | |
16 | 3, 15 | sylan2 284 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → (𝐴 · (𝐵 − 𝐶)) ∈ ℂ) |
17 | 16 | 3impb 1194 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 − 𝐶)) ∈ ℂ) |
18 | 12, 14, 17 | subaddd 8248 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 · 𝐵) − (𝐴 · 𝐶)) = (𝐴 · (𝐵 − 𝐶)) ↔ ((𝐴 · 𝐶) + (𝐴 · (𝐵 − 𝐶))) = (𝐴 · 𝐵))) |
19 | 10, 18 | mpbird 166 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) − (𝐴 · 𝐶)) = (𝐴 · (𝐵 − 𝐶))) |
20 | 19 | eqcomd 2176 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 − 𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 (class class class)co 5853 ℂcc 7772 + caddc 7777 · cmul 7779 − cmin 8090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 |
This theorem is referenced by: subdir 8305 subdii 8326 subdid 8333 expubnd 10533 subsq 10582 cos01bnd 11721 modmulconst 11785 odd2np1 11832 omoe 11855 omeo 11857 phiprmpw 12176 pythagtriplem14 12231 |
Copyright terms: Public domain | W3C validator |