ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem4 GIF version

Theorem 2sqlem4 15680
Description: Lemma for 2sqlem5 15681. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem5.1 (𝜑𝑁 ∈ ℕ)
2sqlem5.2 (𝜑𝑃 ∈ ℙ)
2sqlem4.3 (𝜑𝐴 ∈ ℤ)
2sqlem4.4 (𝜑𝐵 ∈ ℤ)
2sqlem4.5 (𝜑𝐶 ∈ ℤ)
2sqlem4.6 (𝜑𝐷 ∈ ℤ)
2sqlem4.7 (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2)))
2sqlem4.8 (𝜑𝑃 = ((𝐶↑2) + (𝐷↑2)))
Assertion
Ref Expression
2sqlem4 (𝜑𝑁𝑆)

Proof of Theorem 2sqlem4
StepHypRef Expression
1 2sq.1 . . 3 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2 2sqlem5.1 . . . 4 (𝜑𝑁 ∈ ℕ)
32adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝑁 ∈ ℕ)
4 2sqlem5.2 . . . 4 (𝜑𝑃 ∈ ℙ)
54adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝑃 ∈ ℙ)
6 2sqlem4.3 . . . 4 (𝜑𝐴 ∈ ℤ)
76adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝐴 ∈ ℤ)
8 2sqlem4.4 . . . 4 (𝜑𝐵 ∈ ℤ)
98adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝐵 ∈ ℤ)
10 2sqlem4.5 . . . 4 (𝜑𝐶 ∈ ℤ)
1110adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝐶 ∈ ℤ)
12 2sqlem4.6 . . . 4 (𝜑𝐷 ∈ ℤ)
1312adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝐷 ∈ ℤ)
14 2sqlem4.7 . . . 4 (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2)))
1514adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2)))
16 2sqlem4.8 . . . 4 (𝜑𝑃 = ((𝐶↑2) + (𝐷↑2)))
1716adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝑃 = ((𝐶↑2) + (𝐷↑2)))
18 simpr 110 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)))
191, 3, 5, 7, 9, 11, 13, 15, 17, 182sqlem3 15679 . 2 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝑁𝑆)
202adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝑁 ∈ ℕ)
214adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝑃 ∈ ℙ)
226znegcld 9527 . . . 4 (𝜑 → -𝐴 ∈ ℤ)
2322adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → -𝐴 ∈ ℤ)
248adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝐵 ∈ ℤ)
2510adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝐶 ∈ ℤ)
2612adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝐷 ∈ ℤ)
276zcnd 9526 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
28 sqneg 10775 . . . . . . 7 (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
2927, 28syl 14 . . . . . 6 (𝜑 → (-𝐴↑2) = (𝐴↑2))
3029oveq1d 5977 . . . . 5 (𝜑 → ((-𝐴↑2) + (𝐵↑2)) = ((𝐴↑2) + (𝐵↑2)))
3114, 30eqtr4d 2242 . . . 4 (𝜑 → (𝑁 · 𝑃) = ((-𝐴↑2) + (𝐵↑2)))
3231adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → (𝑁 · 𝑃) = ((-𝐴↑2) + (𝐵↑2)))
3316adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝑃 = ((𝐶↑2) + (𝐷↑2)))
3412zcnd 9526 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
3527, 34mulneg1d 8513 . . . . . . 7 (𝜑 → (-𝐴 · 𝐷) = -(𝐴 · 𝐷))
3635oveq2d 5978 . . . . . 6 (𝜑 → ((𝐶 · 𝐵) + (-𝐴 · 𝐷)) = ((𝐶 · 𝐵) + -(𝐴 · 𝐷)))
3710, 8zmulcld 9531 . . . . . . . 8 (𝜑 → (𝐶 · 𝐵) ∈ ℤ)
3837zcnd 9526 . . . . . . 7 (𝜑 → (𝐶 · 𝐵) ∈ ℂ)
396, 12zmulcld 9531 . . . . . . . 8 (𝜑 → (𝐴 · 𝐷) ∈ ℤ)
4039zcnd 9526 . . . . . . 7 (𝜑 → (𝐴 · 𝐷) ∈ ℂ)
4138, 40negsubd 8419 . . . . . 6 (𝜑 → ((𝐶 · 𝐵) + -(𝐴 · 𝐷)) = ((𝐶 · 𝐵) − (𝐴 · 𝐷)))
4236, 41eqtrd 2239 . . . . 5 (𝜑 → ((𝐶 · 𝐵) + (-𝐴 · 𝐷)) = ((𝐶 · 𝐵) − (𝐴 · 𝐷)))
4342breq2d 4066 . . . 4 (𝜑 → (𝑃 ∥ ((𝐶 · 𝐵) + (-𝐴 · 𝐷)) ↔ 𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
4443biimpar 297 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝑃 ∥ ((𝐶 · 𝐵) + (-𝐴 · 𝐷)))
451, 20, 21, 23, 24, 25, 26, 32, 33, 442sqlem3 15679 . 2 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝑁𝑆)
46 prmz 12518 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
474, 46syl 14 . . . . 5 (𝜑𝑃 ∈ ℤ)
48 zsqcl 10787 . . . . . . . 8 (𝐶 ∈ ℤ → (𝐶↑2) ∈ ℤ)
4910, 48syl 14 . . . . . . 7 (𝜑 → (𝐶↑2) ∈ ℤ)
502nnzd 9524 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
5149, 50zmulcld 9531 . . . . . 6 (𝜑 → ((𝐶↑2) · 𝑁) ∈ ℤ)
52 zsqcl 10787 . . . . . . 7 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
536, 52syl 14 . . . . . 6 (𝜑 → (𝐴↑2) ∈ ℤ)
5451, 53zsubcld 9530 . . . . 5 (𝜑 → (((𝐶↑2) · 𝑁) − (𝐴↑2)) ∈ ℤ)
55 dvdsmul1 12209 . . . . 5 ((𝑃 ∈ ℤ ∧ (((𝐶↑2) · 𝑁) − (𝐴↑2)) ∈ ℤ) → 𝑃 ∥ (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))))
5647, 54, 55syl2anc 411 . . . 4 (𝜑𝑃 ∥ (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))))
5710, 6zmulcld 9531 . . . . . . . . 9 (𝜑 → (𝐶 · 𝐴) ∈ ℤ)
5857zcnd 9526 . . . . . . . 8 (𝜑 → (𝐶 · 𝐴) ∈ ℂ)
5958sqcld 10848 . . . . . . 7 (𝜑 → ((𝐶 · 𝐴)↑2) ∈ ℂ)
6038sqcld 10848 . . . . . . 7 (𝜑 → ((𝐶 · 𝐵)↑2) ∈ ℂ)
6140sqcld 10848 . . . . . . 7 (𝜑 → ((𝐴 · 𝐷)↑2) ∈ ℂ)
6259, 60, 61pnpcand 8450 . . . . . 6 (𝜑 → ((((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) − (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2))) = (((𝐶 · 𝐵)↑2) − ((𝐴 · 𝐷)↑2)))
6310zcnd 9526 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
6463, 27sqmuld 10862 . . . . . . . . . . 11 (𝜑 → ((𝐶 · 𝐴)↑2) = ((𝐶↑2) · (𝐴↑2)))
658zcnd 9526 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℂ)
6663, 65sqmuld 10862 . . . . . . . . . . 11 (𝜑 → ((𝐶 · 𝐵)↑2) = ((𝐶↑2) · (𝐵↑2)))
6764, 66oveq12d 5980 . . . . . . . . . 10 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) = (((𝐶↑2) · (𝐴↑2)) + ((𝐶↑2) · (𝐵↑2))))
6863sqcld 10848 . . . . . . . . . . 11 (𝜑 → (𝐶↑2) ∈ ℂ)
6953zcnd 9526 . . . . . . . . . . 11 (𝜑 → (𝐴↑2) ∈ ℂ)
7065sqcld 10848 . . . . . . . . . . 11 (𝜑 → (𝐵↑2) ∈ ℂ)
7168, 69, 70adddid 8127 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) · ((𝐴↑2) + (𝐵↑2))) = (((𝐶↑2) · (𝐴↑2)) + ((𝐶↑2) · (𝐵↑2))))
7267, 71eqtr4d 2242 . . . . . . . . 9 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) = ((𝐶↑2) · ((𝐴↑2) + (𝐵↑2))))
732nncnd 9080 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
7447zcnd 9526 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℂ)
7573, 74mulcomd 8124 . . . . . . . . . . . 12 (𝜑 → (𝑁 · 𝑃) = (𝑃 · 𝑁))
7614, 75eqtr3d 2241 . . . . . . . . . . 11 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝑃 · 𝑁))
7776oveq2d 5978 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) · ((𝐴↑2) + (𝐵↑2))) = ((𝐶↑2) · (𝑃 · 𝑁)))
7868, 74, 73mul12d 8254 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) · (𝑃 · 𝑁)) = (𝑃 · ((𝐶↑2) · 𝑁)))
7977, 78eqtrd 2239 . . . . . . . . 9 (𝜑 → ((𝐶↑2) · ((𝐴↑2) + (𝐵↑2))) = (𝑃 · ((𝐶↑2) · 𝑁)))
8072, 79eqtrd 2239 . . . . . . . 8 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) = (𝑃 · ((𝐶↑2) · 𝑁)))
8127, 34sqmuld 10862 . . . . . . . . . . . 12 (𝜑 → ((𝐴 · 𝐷)↑2) = ((𝐴↑2) · (𝐷↑2)))
8234sqcld 10848 . . . . . . . . . . . . 13 (𝜑 → (𝐷↑2) ∈ ℂ)
8369, 82mulcomd 8124 . . . . . . . . . . . 12 (𝜑 → ((𝐴↑2) · (𝐷↑2)) = ((𝐷↑2) · (𝐴↑2)))
8481, 83eqtrd 2239 . . . . . . . . . . 11 (𝜑 → ((𝐴 · 𝐷)↑2) = ((𝐷↑2) · (𝐴↑2)))
8564, 84oveq12d 5980 . . . . . . . . . 10 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2)) = (((𝐶↑2) · (𝐴↑2)) + ((𝐷↑2) · (𝐴↑2))))
8649zcnd 9526 . . . . . . . . . . 11 (𝜑 → (𝐶↑2) ∈ ℂ)
8786, 82, 69adddird 8128 . . . . . . . . . 10 (𝜑 → (((𝐶↑2) + (𝐷↑2)) · (𝐴↑2)) = (((𝐶↑2) · (𝐴↑2)) + ((𝐷↑2) · (𝐴↑2))))
8885, 87eqtr4d 2242 . . . . . . . . 9 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2)) = (((𝐶↑2) + (𝐷↑2)) · (𝐴↑2)))
8916oveq1d 5977 . . . . . . . . 9 (𝜑 → (𝑃 · (𝐴↑2)) = (((𝐶↑2) + (𝐷↑2)) · (𝐴↑2)))
9088, 89eqtr4d 2242 . . . . . . . 8 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2)) = (𝑃 · (𝐴↑2)))
9180, 90oveq12d 5980 . . . . . . 7 (𝜑 → ((((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) − (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2))) = ((𝑃 · ((𝐶↑2) · 𝑁)) − (𝑃 · (𝐴↑2))))
9251zcnd 9526 . . . . . . . 8 (𝜑 → ((𝐶↑2) · 𝑁) ∈ ℂ)
9374, 92, 69subdid 8516 . . . . . . 7 (𝜑 → (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))) = ((𝑃 · ((𝐶↑2) · 𝑁)) − (𝑃 · (𝐴↑2))))
9491, 93eqtr4d 2242 . . . . . 6 (𝜑 → ((((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) − (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2))) = (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))))
9562, 94eqtr3d 2241 . . . . 5 (𝜑 → (((𝐶 · 𝐵)↑2) − ((𝐴 · 𝐷)↑2)) = (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))))
96 subsq 10823 . . . . . 6 (((𝐶 · 𝐵) ∈ ℂ ∧ (𝐴 · 𝐷) ∈ ℂ) → (((𝐶 · 𝐵)↑2) − ((𝐴 · 𝐷)↑2)) = (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
9738, 40, 96syl2anc 411 . . . . 5 (𝜑 → (((𝐶 · 𝐵)↑2) − ((𝐴 · 𝐷)↑2)) = (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
9895, 97eqtr3d 2241 . . . 4 (𝜑 → (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))) = (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
9956, 98breqtrd 4080 . . 3 (𝜑𝑃 ∥ (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
10037, 39zaddcld 9529 . . . 4 (𝜑 → ((𝐶 · 𝐵) + (𝐴 · 𝐷)) ∈ ℤ)
10137, 39zsubcld 9530 . . . 4 (𝜑 → ((𝐶 · 𝐵) − (𝐴 · 𝐷)) ∈ ℤ)
102 euclemma 12553 . . . 4 ((𝑃 ∈ ℙ ∧ ((𝐶 · 𝐵) + (𝐴 · 𝐷)) ∈ ℤ ∧ ((𝐶 · 𝐵) − (𝐴 · 𝐷)) ∈ ℤ) → (𝑃 ∥ (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))) ↔ (𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)) ∨ 𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷)))))
1034, 100, 101, 102syl3anc 1250 . . 3 (𝜑 → (𝑃 ∥ (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))) ↔ (𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)) ∨ 𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷)))))
10499, 103mpbid 147 . 2 (𝜑 → (𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)) ∨ 𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
10519, 45, 104mpjaodan 800 1 (𝜑𝑁𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2177   class class class wbr 4054  cmpt 4116  ran crn 4689  cfv 5285  (class class class)co 5962  cc 7953   + caddc 7958   · cmul 7960  cmin 8273  -cneg 8274  cn 9066  2c2 9117  cz 9402  cexp 10715  abscabs 11393  cdvds 12183  cprime 12514  ℤ[i]cgz 12777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074  ax-caucvg 8075
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-1o 6520  df-2o 6521  df-er 6638  df-en 6846  df-sup 7107  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-n0 9326  df-z 9403  df-uz 9679  df-q 9771  df-rp 9806  df-fz 10161  df-fzo 10295  df-fl 10445  df-mod 10500  df-seqfrec 10625  df-exp 10716  df-cj 11238  df-re 11239  df-im 11240  df-rsqrt 11394  df-abs 11395  df-dvds 12184  df-gcd 12360  df-prm 12515  df-gz 12778
This theorem is referenced by:  2sqlem5  15681
  Copyright terms: Public domain W3C validator