ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem4 GIF version

Theorem 2sqlem4 15443
Description: Lemma for 2sqlem5 15444. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem5.1 (𝜑𝑁 ∈ ℕ)
2sqlem5.2 (𝜑𝑃 ∈ ℙ)
2sqlem4.3 (𝜑𝐴 ∈ ℤ)
2sqlem4.4 (𝜑𝐵 ∈ ℤ)
2sqlem4.5 (𝜑𝐶 ∈ ℤ)
2sqlem4.6 (𝜑𝐷 ∈ ℤ)
2sqlem4.7 (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2)))
2sqlem4.8 (𝜑𝑃 = ((𝐶↑2) + (𝐷↑2)))
Assertion
Ref Expression
2sqlem4 (𝜑𝑁𝑆)

Proof of Theorem 2sqlem4
StepHypRef Expression
1 2sq.1 . . 3 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2 2sqlem5.1 . . . 4 (𝜑𝑁 ∈ ℕ)
32adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝑁 ∈ ℕ)
4 2sqlem5.2 . . . 4 (𝜑𝑃 ∈ ℙ)
54adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝑃 ∈ ℙ)
6 2sqlem4.3 . . . 4 (𝜑𝐴 ∈ ℤ)
76adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝐴 ∈ ℤ)
8 2sqlem4.4 . . . 4 (𝜑𝐵 ∈ ℤ)
98adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝐵 ∈ ℤ)
10 2sqlem4.5 . . . 4 (𝜑𝐶 ∈ ℤ)
1110adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝐶 ∈ ℤ)
12 2sqlem4.6 . . . 4 (𝜑𝐷 ∈ ℤ)
1312adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝐷 ∈ ℤ)
14 2sqlem4.7 . . . 4 (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2)))
1514adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2)))
16 2sqlem4.8 . . . 4 (𝜑𝑃 = ((𝐶↑2) + (𝐷↑2)))
1716adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝑃 = ((𝐶↑2) + (𝐷↑2)))
18 simpr 110 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)))
191, 3, 5, 7, 9, 11, 13, 15, 17, 182sqlem3 15442 . 2 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) → 𝑁𝑆)
202adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝑁 ∈ ℕ)
214adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝑃 ∈ ℙ)
226znegcld 9467 . . . 4 (𝜑 → -𝐴 ∈ ℤ)
2322adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → -𝐴 ∈ ℤ)
248adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝐵 ∈ ℤ)
2510adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝐶 ∈ ℤ)
2612adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝐷 ∈ ℤ)
276zcnd 9466 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
28 sqneg 10707 . . . . . . 7 (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2))
2927, 28syl 14 . . . . . 6 (𝜑 → (-𝐴↑2) = (𝐴↑2))
3029oveq1d 5940 . . . . 5 (𝜑 → ((-𝐴↑2) + (𝐵↑2)) = ((𝐴↑2) + (𝐵↑2)))
3114, 30eqtr4d 2232 . . . 4 (𝜑 → (𝑁 · 𝑃) = ((-𝐴↑2) + (𝐵↑2)))
3231adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → (𝑁 · 𝑃) = ((-𝐴↑2) + (𝐵↑2)))
3316adantr 276 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝑃 = ((𝐶↑2) + (𝐷↑2)))
3412zcnd 9466 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
3527, 34mulneg1d 8454 . . . . . . 7 (𝜑 → (-𝐴 · 𝐷) = -(𝐴 · 𝐷))
3635oveq2d 5941 . . . . . 6 (𝜑 → ((𝐶 · 𝐵) + (-𝐴 · 𝐷)) = ((𝐶 · 𝐵) + -(𝐴 · 𝐷)))
3710, 8zmulcld 9471 . . . . . . . 8 (𝜑 → (𝐶 · 𝐵) ∈ ℤ)
3837zcnd 9466 . . . . . . 7 (𝜑 → (𝐶 · 𝐵) ∈ ℂ)
396, 12zmulcld 9471 . . . . . . . 8 (𝜑 → (𝐴 · 𝐷) ∈ ℤ)
4039zcnd 9466 . . . . . . 7 (𝜑 → (𝐴 · 𝐷) ∈ ℂ)
4138, 40negsubd 8360 . . . . . 6 (𝜑 → ((𝐶 · 𝐵) + -(𝐴 · 𝐷)) = ((𝐶 · 𝐵) − (𝐴 · 𝐷)))
4236, 41eqtrd 2229 . . . . 5 (𝜑 → ((𝐶 · 𝐵) + (-𝐴 · 𝐷)) = ((𝐶 · 𝐵) − (𝐴 · 𝐷)))
4342breq2d 4046 . . . 4 (𝜑 → (𝑃 ∥ ((𝐶 · 𝐵) + (-𝐴 · 𝐷)) ↔ 𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
4443biimpar 297 . . 3 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝑃 ∥ ((𝐶 · 𝐵) + (-𝐴 · 𝐷)))
451, 20, 21, 23, 24, 25, 26, 32, 33, 442sqlem3 15442 . 2 ((𝜑𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))) → 𝑁𝑆)
46 prmz 12304 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
474, 46syl 14 . . . . 5 (𝜑𝑃 ∈ ℤ)
48 zsqcl 10719 . . . . . . . 8 (𝐶 ∈ ℤ → (𝐶↑2) ∈ ℤ)
4910, 48syl 14 . . . . . . 7 (𝜑 → (𝐶↑2) ∈ ℤ)
502nnzd 9464 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
5149, 50zmulcld 9471 . . . . . 6 (𝜑 → ((𝐶↑2) · 𝑁) ∈ ℤ)
52 zsqcl 10719 . . . . . . 7 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
536, 52syl 14 . . . . . 6 (𝜑 → (𝐴↑2) ∈ ℤ)
5451, 53zsubcld 9470 . . . . 5 (𝜑 → (((𝐶↑2) · 𝑁) − (𝐴↑2)) ∈ ℤ)
55 dvdsmul1 11995 . . . . 5 ((𝑃 ∈ ℤ ∧ (((𝐶↑2) · 𝑁) − (𝐴↑2)) ∈ ℤ) → 𝑃 ∥ (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))))
5647, 54, 55syl2anc 411 . . . 4 (𝜑𝑃 ∥ (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))))
5710, 6zmulcld 9471 . . . . . . . . 9 (𝜑 → (𝐶 · 𝐴) ∈ ℤ)
5857zcnd 9466 . . . . . . . 8 (𝜑 → (𝐶 · 𝐴) ∈ ℂ)
5958sqcld 10780 . . . . . . 7 (𝜑 → ((𝐶 · 𝐴)↑2) ∈ ℂ)
6038sqcld 10780 . . . . . . 7 (𝜑 → ((𝐶 · 𝐵)↑2) ∈ ℂ)
6140sqcld 10780 . . . . . . 7 (𝜑 → ((𝐴 · 𝐷)↑2) ∈ ℂ)
6259, 60, 61pnpcand 8391 . . . . . 6 (𝜑 → ((((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) − (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2))) = (((𝐶 · 𝐵)↑2) − ((𝐴 · 𝐷)↑2)))
6310zcnd 9466 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
6463, 27sqmuld 10794 . . . . . . . . . . 11 (𝜑 → ((𝐶 · 𝐴)↑2) = ((𝐶↑2) · (𝐴↑2)))
658zcnd 9466 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℂ)
6663, 65sqmuld 10794 . . . . . . . . . . 11 (𝜑 → ((𝐶 · 𝐵)↑2) = ((𝐶↑2) · (𝐵↑2)))
6764, 66oveq12d 5943 . . . . . . . . . 10 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) = (((𝐶↑2) · (𝐴↑2)) + ((𝐶↑2) · (𝐵↑2))))
6863sqcld 10780 . . . . . . . . . . 11 (𝜑 → (𝐶↑2) ∈ ℂ)
6953zcnd 9466 . . . . . . . . . . 11 (𝜑 → (𝐴↑2) ∈ ℂ)
7065sqcld 10780 . . . . . . . . . . 11 (𝜑 → (𝐵↑2) ∈ ℂ)
7168, 69, 70adddid 8068 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) · ((𝐴↑2) + (𝐵↑2))) = (((𝐶↑2) · (𝐴↑2)) + ((𝐶↑2) · (𝐵↑2))))
7267, 71eqtr4d 2232 . . . . . . . . 9 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) = ((𝐶↑2) · ((𝐴↑2) + (𝐵↑2))))
732nncnd 9021 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
7447zcnd 9466 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℂ)
7573, 74mulcomd 8065 . . . . . . . . . . . 12 (𝜑 → (𝑁 · 𝑃) = (𝑃 · 𝑁))
7614, 75eqtr3d 2231 . . . . . . . . . . 11 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝑃 · 𝑁))
7776oveq2d 5941 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) · ((𝐴↑2) + (𝐵↑2))) = ((𝐶↑2) · (𝑃 · 𝑁)))
7868, 74, 73mul12d 8195 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) · (𝑃 · 𝑁)) = (𝑃 · ((𝐶↑2) · 𝑁)))
7977, 78eqtrd 2229 . . . . . . . . 9 (𝜑 → ((𝐶↑2) · ((𝐴↑2) + (𝐵↑2))) = (𝑃 · ((𝐶↑2) · 𝑁)))
8072, 79eqtrd 2229 . . . . . . . 8 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) = (𝑃 · ((𝐶↑2) · 𝑁)))
8127, 34sqmuld 10794 . . . . . . . . . . . 12 (𝜑 → ((𝐴 · 𝐷)↑2) = ((𝐴↑2) · (𝐷↑2)))
8234sqcld 10780 . . . . . . . . . . . . 13 (𝜑 → (𝐷↑2) ∈ ℂ)
8369, 82mulcomd 8065 . . . . . . . . . . . 12 (𝜑 → ((𝐴↑2) · (𝐷↑2)) = ((𝐷↑2) · (𝐴↑2)))
8481, 83eqtrd 2229 . . . . . . . . . . 11 (𝜑 → ((𝐴 · 𝐷)↑2) = ((𝐷↑2) · (𝐴↑2)))
8564, 84oveq12d 5943 . . . . . . . . . 10 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2)) = (((𝐶↑2) · (𝐴↑2)) + ((𝐷↑2) · (𝐴↑2))))
8649zcnd 9466 . . . . . . . . . . 11 (𝜑 → (𝐶↑2) ∈ ℂ)
8786, 82, 69adddird 8069 . . . . . . . . . 10 (𝜑 → (((𝐶↑2) + (𝐷↑2)) · (𝐴↑2)) = (((𝐶↑2) · (𝐴↑2)) + ((𝐷↑2) · (𝐴↑2))))
8885, 87eqtr4d 2232 . . . . . . . . 9 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2)) = (((𝐶↑2) + (𝐷↑2)) · (𝐴↑2)))
8916oveq1d 5940 . . . . . . . . 9 (𝜑 → (𝑃 · (𝐴↑2)) = (((𝐶↑2) + (𝐷↑2)) · (𝐴↑2)))
9088, 89eqtr4d 2232 . . . . . . . 8 (𝜑 → (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2)) = (𝑃 · (𝐴↑2)))
9180, 90oveq12d 5943 . . . . . . 7 (𝜑 → ((((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) − (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2))) = ((𝑃 · ((𝐶↑2) · 𝑁)) − (𝑃 · (𝐴↑2))))
9251zcnd 9466 . . . . . . . 8 (𝜑 → ((𝐶↑2) · 𝑁) ∈ ℂ)
9374, 92, 69subdid 8457 . . . . . . 7 (𝜑 → (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))) = ((𝑃 · ((𝐶↑2) · 𝑁)) − (𝑃 · (𝐴↑2))))
9491, 93eqtr4d 2232 . . . . . 6 (𝜑 → ((((𝐶 · 𝐴)↑2) + ((𝐶 · 𝐵)↑2)) − (((𝐶 · 𝐴)↑2) + ((𝐴 · 𝐷)↑2))) = (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))))
9562, 94eqtr3d 2231 . . . . 5 (𝜑 → (((𝐶 · 𝐵)↑2) − ((𝐴 · 𝐷)↑2)) = (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))))
96 subsq 10755 . . . . . 6 (((𝐶 · 𝐵) ∈ ℂ ∧ (𝐴 · 𝐷) ∈ ℂ) → (((𝐶 · 𝐵)↑2) − ((𝐴 · 𝐷)↑2)) = (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
9738, 40, 96syl2anc 411 . . . . 5 (𝜑 → (((𝐶 · 𝐵)↑2) − ((𝐴 · 𝐷)↑2)) = (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
9895, 97eqtr3d 2231 . . . 4 (𝜑 → (𝑃 · (((𝐶↑2) · 𝑁) − (𝐴↑2))) = (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
9956, 98breqtrd 4060 . . 3 (𝜑𝑃 ∥ (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
10037, 39zaddcld 9469 . . . 4 (𝜑 → ((𝐶 · 𝐵) + (𝐴 · 𝐷)) ∈ ℤ)
10137, 39zsubcld 9470 . . . 4 (𝜑 → ((𝐶 · 𝐵) − (𝐴 · 𝐷)) ∈ ℤ)
102 euclemma 12339 . . . 4 ((𝑃 ∈ ℙ ∧ ((𝐶 · 𝐵) + (𝐴 · 𝐷)) ∈ ℤ ∧ ((𝐶 · 𝐵) − (𝐴 · 𝐷)) ∈ ℤ) → (𝑃 ∥ (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))) ↔ (𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)) ∨ 𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷)))))
1034, 100, 101, 102syl3anc 1249 . . 3 (𝜑 → (𝑃 ∥ (((𝐶 · 𝐵) + (𝐴 · 𝐷)) · ((𝐶 · 𝐵) − (𝐴 · 𝐷))) ↔ (𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)) ∨ 𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷)))))
10499, 103mpbid 147 . 2 (𝜑 → (𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷)) ∨ 𝑃 ∥ ((𝐶 · 𝐵) − (𝐴 · 𝐷))))
10519, 45, 104mpjaodan 799 1 (𝜑𝑁𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167   class class class wbr 4034  cmpt 4095  ran crn 4665  cfv 5259  (class class class)co 5925  cc 7894   + caddc 7899   · cmul 7901  cmin 8214  -cneg 8215  cn 9007  2c2 9058  cz 9343  cexp 10647  abscabs 11179  cdvds 11969  cprime 12300  ℤ[i]cgz 12563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-dvds 11970  df-gcd 12146  df-prm 12301  df-gz 12564
This theorem is referenced by:  2sqlem5  15444
  Copyright terms: Public domain W3C validator