ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flhalf GIF version

Theorem flhalf 9763
Description: Ordering relation for the floor of half of an integer. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
Assertion
Ref Expression
flhalf (𝑁 ∈ ℤ → 𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))))

Proof of Theorem flhalf
StepHypRef Expression
1 peano2z 8840 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
2 2nn 8631 . . . . . . 7 2 ∈ ℕ
3 znq 9163 . . . . . . 7 (((𝑁 + 1) ∈ ℤ ∧ 2 ∈ ℕ) → ((𝑁 + 1) / 2) ∈ ℚ)
41, 2, 3sylancl 405 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℚ)
5 flqltp1 9740 . . . . . 6 (((𝑁 + 1) / 2) ∈ ℚ → ((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1))
64, 5syl 14 . . . . 5 (𝑁 ∈ ℤ → ((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1))
7 zre 8808 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
8 peano2re 7672 . . . . . . 7 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
97, 8syl 14 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℝ)
104flqcld 9738 . . . . . . . 8 (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℤ)
1110zred 8922 . . . . . . 7 (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℝ)
12 1red 7557 . . . . . . 7 (𝑁 ∈ ℤ → 1 ∈ ℝ)
1311, 12readdcld 7571 . . . . . 6 (𝑁 ∈ ℤ → ((⌊‘((𝑁 + 1) / 2)) + 1) ∈ ℝ)
14 2rp 9193 . . . . . . 7 2 ∈ ℝ+
1514a1i 9 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℝ+)
169, 13, 15ltdivmuld 9279 . . . . 5 (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1) ↔ (𝑁 + 1) < (2 · ((⌊‘((𝑁 + 1) / 2)) + 1))))
176, 16mpbid 146 . . . 4 (𝑁 ∈ ℤ → (𝑁 + 1) < (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)))
1812recnd 7570 . . . . . . 7 (𝑁 ∈ ℤ → 1 ∈ ℂ)
19182timesd 8712 . . . . . 6 (𝑁 ∈ ℤ → (2 · 1) = (1 + 1))
2019oveq2d 5682 . . . . 5 (𝑁 ∈ ℤ → ((2 · (⌊‘((𝑁 + 1) / 2))) + (2 · 1)) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (1 + 1)))
21 2cnd 8549 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℂ)
2211recnd 7570 . . . . . 6 (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℂ)
2321, 22, 18adddid 7566 . . . . 5 (𝑁 ∈ ℤ → (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (2 · 1)))
24 2re 8546 . . . . . . . . 9 2 ∈ ℝ
2524a1i 9 . . . . . . . 8 (𝑁 ∈ ℤ → 2 ∈ ℝ)
2625, 11remulcld 7572 . . . . . . 7 (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℝ)
2726recnd 7570 . . . . . 6 (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℂ)
2827, 18, 18addassd 7564 . . . . 5 (𝑁 ∈ ℤ → (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (1 + 1)))
2920, 23, 283eqtr4d 2131 . . . 4 (𝑁 ∈ ℤ → (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)) = (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1))
3017, 29breqtrd 3875 . . 3 (𝑁 ∈ ℤ → (𝑁 + 1) < (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1))
3126, 12readdcld 7571 . . . 4 (𝑁 ∈ ℤ → ((2 · (⌊‘((𝑁 + 1) / 2))) + 1) ∈ ℝ)
327, 31, 12ltadd1d 8069 . . 3 (𝑁 ∈ ℤ → (𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1) ↔ (𝑁 + 1) < (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1)))
3330, 32mpbird 166 . 2 (𝑁 ∈ ℤ → 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1))
34 2z 8832 . . . . 5 2 ∈ ℤ
3534a1i 9 . . . 4 (𝑁 ∈ ℤ → 2 ∈ ℤ)
3635, 10zmulcld 8928 . . 3 (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℤ)
37 zleltp1 8859 . . 3 ((𝑁 ∈ ℤ ∧ (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℤ) → (𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))) ↔ 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1)))
3836, 37mpdan 413 . 2 (𝑁 ∈ ℤ → (𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))) ↔ 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1)))
3933, 38mpbird 166 1 (𝑁 ∈ ℤ → 𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 1439   class class class wbr 3851  cfv 5028  (class class class)co 5666  cr 7403  1c1 7405   + caddc 7407   · cmul 7409   < clt 7576  cle 7577   / cdiv 8193  cn 8476  2c2 8527  cz 8804  cq 9158  +crp 9188  cfl 9729
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7490  ax-resscn 7491  ax-1cn 7492  ax-1re 7493  ax-icn 7494  ax-addcl 7495  ax-addrcl 7496  ax-mulcl 7497  ax-mulrcl 7498  ax-addcom 7499  ax-mulcom 7500  ax-addass 7501  ax-mulass 7502  ax-distr 7503  ax-i2m1 7504  ax-0lt1 7505  ax-1rid 7506  ax-0id 7507  ax-rnegex 7508  ax-precex 7509  ax-cnre 7510  ax-pre-ltirr 7511  ax-pre-ltwlin 7512  ax-pre-lttrn 7513  ax-pre-apti 7514  ax-pre-ltadd 7515  ax-pre-mulgt0 7516  ax-pre-mulext 7517  ax-arch 7518
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-po 4132  df-iso 4133  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-res 4463  df-ima 4464  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-pnf 7578  df-mnf 7579  df-xr 7580  df-ltxr 7581  df-le 7582  df-sub 7709  df-neg 7710  df-reap 8106  df-ap 8113  df-div 8194  df-inn 8477  df-2 8535  df-n0 8728  df-z 8805  df-q 9159  df-rp 9189  df-fl 9731
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator