ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flhalf GIF version

Theorem flhalf 10258
Description: Ordering relation for the floor of half of an integer. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
Assertion
Ref Expression
flhalf (𝑁 ∈ ℤ → 𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))))

Proof of Theorem flhalf
StepHypRef Expression
1 peano2z 9248 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
2 2nn 9039 . . . . . . 7 2 ∈ ℕ
3 znq 9583 . . . . . . 7 (((𝑁 + 1) ∈ ℤ ∧ 2 ∈ ℕ) → ((𝑁 + 1) / 2) ∈ ℚ)
41, 2, 3sylancl 411 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℚ)
5 flqltp1 10235 . . . . . 6 (((𝑁 + 1) / 2) ∈ ℚ → ((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1))
64, 5syl 14 . . . . 5 (𝑁 ∈ ℤ → ((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1))
7 zre 9216 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
8 peano2re 8055 . . . . . . 7 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
97, 8syl 14 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℝ)
104flqcld 10233 . . . . . . . 8 (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℤ)
1110zred 9334 . . . . . . 7 (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℝ)
12 1red 7935 . . . . . . 7 (𝑁 ∈ ℤ → 1 ∈ ℝ)
1311, 12readdcld 7949 . . . . . 6 (𝑁 ∈ ℤ → ((⌊‘((𝑁 + 1) / 2)) + 1) ∈ ℝ)
14 2rp 9615 . . . . . . 7 2 ∈ ℝ+
1514a1i 9 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℝ+)
169, 13, 15ltdivmuld 9705 . . . . 5 (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) < ((⌊‘((𝑁 + 1) / 2)) + 1) ↔ (𝑁 + 1) < (2 · ((⌊‘((𝑁 + 1) / 2)) + 1))))
176, 16mpbid 146 . . . 4 (𝑁 ∈ ℤ → (𝑁 + 1) < (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)))
1812recnd 7948 . . . . . . 7 (𝑁 ∈ ℤ → 1 ∈ ℂ)
19182timesd 9120 . . . . . 6 (𝑁 ∈ ℤ → (2 · 1) = (1 + 1))
2019oveq2d 5869 . . . . 5 (𝑁 ∈ ℤ → ((2 · (⌊‘((𝑁 + 1) / 2))) + (2 · 1)) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (1 + 1)))
21 2cnd 8951 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℂ)
2211recnd 7948 . . . . . 6 (𝑁 ∈ ℤ → (⌊‘((𝑁 + 1) / 2)) ∈ ℂ)
2321, 22, 18adddid 7944 . . . . 5 (𝑁 ∈ ℤ → (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (2 · 1)))
24 2re 8948 . . . . . . . . 9 2 ∈ ℝ
2524a1i 9 . . . . . . . 8 (𝑁 ∈ ℤ → 2 ∈ ℝ)
2625, 11remulcld 7950 . . . . . . 7 (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℝ)
2726recnd 7948 . . . . . 6 (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℂ)
2827, 18, 18addassd 7942 . . . . 5 (𝑁 ∈ ℤ → (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1) = ((2 · (⌊‘((𝑁 + 1) / 2))) + (1 + 1)))
2920, 23, 283eqtr4d 2213 . . . 4 (𝑁 ∈ ℤ → (2 · ((⌊‘((𝑁 + 1) / 2)) + 1)) = (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1))
3017, 29breqtrd 4015 . . 3 (𝑁 ∈ ℤ → (𝑁 + 1) < (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1))
3126, 12readdcld 7949 . . . 4 (𝑁 ∈ ℤ → ((2 · (⌊‘((𝑁 + 1) / 2))) + 1) ∈ ℝ)
327, 31, 12ltadd1d 8457 . . 3 (𝑁 ∈ ℤ → (𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1) ↔ (𝑁 + 1) < (((2 · (⌊‘((𝑁 + 1) / 2))) + 1) + 1)))
3330, 32mpbird 166 . 2 (𝑁 ∈ ℤ → 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1))
34 2z 9240 . . . . 5 2 ∈ ℤ
3534a1i 9 . . . 4 (𝑁 ∈ ℤ → 2 ∈ ℤ)
3635, 10zmulcld 9340 . . 3 (𝑁 ∈ ℤ → (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℤ)
37 zleltp1 9267 . . 3 ((𝑁 ∈ ℤ ∧ (2 · (⌊‘((𝑁 + 1) / 2))) ∈ ℤ) → (𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))) ↔ 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1)))
3836, 37mpdan 419 . 2 (𝑁 ∈ ℤ → (𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))) ↔ 𝑁 < ((2 · (⌊‘((𝑁 + 1) / 2))) + 1)))
3933, 38mpbird 166 1 (𝑁 ∈ ℤ → 𝑁 ≤ (2 · (⌊‘((𝑁 + 1) / 2))))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 2141   class class class wbr 3989  cfv 5198  (class class class)co 5853  cr 7773  1c1 7775   + caddc 7777   · cmul 7779   < clt 7954  cle 7955   / cdiv 8589  cn 8878  2c2 8929  cz 9212  cq 9578  +crp 9610  cfl 10224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-q 9579  df-rp 9611  df-fl 10226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator