ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tanval3ap GIF version

Theorem tanval3ap 11706
Description: Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon, 22-Dec-2022.)
Assertion
Ref Expression
tanval3ap ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (tan‘𝐴) = (((exp‘(2 · (i · 𝐴))) − 1) / (i · ((exp‘(2 · (i · 𝐴))) + 1))))

Proof of Theorem tanval3ap
StepHypRef Expression
1 ax-icn 7897 . . . . . 6 i ∈ ℂ
2 simpl 109 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → 𝐴 ∈ ℂ)
3 mulcl 7929 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
41, 2, 3sylancr 414 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (i · 𝐴) ∈ ℂ)
5 efcl 11656 . . . . 5 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
64, 5syl 14 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (exp‘(i · 𝐴)) ∈ ℂ)
7 negicn 8148 . . . . . 6 -i ∈ ℂ
8 mulcl 7929 . . . . . 6 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
97, 2, 8sylancr 414 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (-i · 𝐴) ∈ ℂ)
10 efcl 11656 . . . . 5 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
119, 10syl 14 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (exp‘(-i · 𝐴)) ∈ ℂ)
126, 11subcld 8258 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
136, 11addcld 7967 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ)
14 mulcl 7929 . . . 4 ((i ∈ ℂ ∧ ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ) → (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) ∈ ℂ)
151, 13, 14sylancr 414 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) ∈ ℂ)
16 2z 9270 . . . . . . . . . . 11 2 ∈ ℤ
17 efexp 11674 . . . . . . . . . . 11 (((i · 𝐴) ∈ ℂ ∧ 2 ∈ ℤ) → (exp‘(2 · (i · 𝐴))) = ((exp‘(i · 𝐴))↑2))
184, 16, 17sylancl 413 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (exp‘(2 · (i · 𝐴))) = ((exp‘(i · 𝐴))↑2))
196sqvald 10636 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(i · 𝐴))↑2) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
2018, 19eqtrd 2210 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (exp‘(2 · (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
21 mulneg1 8342 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = -(i · 𝐴))
221, 2, 21sylancr 414 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (-i · 𝐴) = -(i · 𝐴))
2322fveq2d 5515 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (exp‘(-i · 𝐴)) = (exp‘-(i · 𝐴)))
2423oveq2d 5885 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘-(i · 𝐴))))
25 efcan 11668 . . . . . . . . . . 11 ((i · 𝐴) ∈ ℂ → ((exp‘(i · 𝐴)) · (exp‘-(i · 𝐴))) = 1)
264, 25syl 14 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(i · 𝐴)) · (exp‘-(i · 𝐴))) = 1)
2724, 26eqtr2d 2211 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → 1 = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
2820, 27oveq12d 5887 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(2 · (i · 𝐴))) + 1) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) + ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴)))))
296, 6, 11adddid 7972 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) + ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴)))))
3028, 29eqtr4d 2213 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(2 · (i · 𝐴))) + 1) = ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))
3130oveq2d 5885 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (i · ((exp‘(2 · (i · 𝐴))) + 1)) = (i · ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
321a1i 9 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → i ∈ ℂ)
3332, 6, 13mul12d 8099 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (i · ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))) = ((exp‘(i · 𝐴)) · (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
3431, 33eqtrd 2210 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (i · ((exp‘(2 · (i · 𝐴))) + 1)) = ((exp‘(i · 𝐴)) · (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
35 2cn 8979 . . . . . . . . 9 2 ∈ ℂ
36 mulcl 7929 . . . . . . . . 9 ((2 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (2 · (i · 𝐴)) ∈ ℂ)
3735, 4, 36sylancr 414 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (2 · (i · 𝐴)) ∈ ℂ)
38 efcl 11656 . . . . . . . 8 ((2 · (i · 𝐴)) ∈ ℂ → (exp‘(2 · (i · 𝐴))) ∈ ℂ)
3937, 38syl 14 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (exp‘(2 · (i · 𝐴))) ∈ ℂ)
40 ax-1cn 7895 . . . . . . 7 1 ∈ ℂ
41 addcl 7927 . . . . . . 7 (((exp‘(2 · (i · 𝐴))) ∈ ℂ ∧ 1 ∈ ℂ) → ((exp‘(2 · (i · 𝐴))) + 1) ∈ ℂ)
4239, 40, 41sylancl 413 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(2 · (i · 𝐴))) + 1) ∈ ℂ)
43 iap0 9131 . . . . . . 7 i # 0
4443a1i 9 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → i # 0)
45 simpr 110 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(2 · (i · 𝐴))) + 1) # 0)
4632, 42, 44, 45mulap0d 8604 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (i · ((exp‘(2 · (i · 𝐴))) + 1)) # 0)
4734, 46eqbrtrrd 4024 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(i · 𝐴)) · (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))) # 0)
486, 15, 47mulap0bbd 8606 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) # 0)
49 efap0 11669 . . . 4 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) # 0)
504, 49syl 14 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (exp‘(i · 𝐴)) # 0)
5112, 15, 6, 48, 50divcanap5d 8763 . 2 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / ((exp‘(i · 𝐴)) · (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
5220, 27oveq12d 5887 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(2 · (i · 𝐴))) − 1) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴)))))
536, 6, 11subdid 8361 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) = (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) − ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴)))))
5452, 53eqtr4d 2213 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(2 · (i · 𝐴))) − 1) = ((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))))
5554, 34oveq12d 5887 . 2 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (((exp‘(2 · (i · 𝐴))) − 1) / (i · ((exp‘(2 · (i · 𝐴))) + 1))) = (((exp‘(i · 𝐴)) · ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / ((exp‘(i · 𝐴)) · (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))))
56 cosval 11695 . . . . 5 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
5756adantr 276 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
58 2cnd 8981 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → 2 ∈ ℂ)
5932, 13, 48mulap0bbd 8606 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) # 0)
60 2ap0 9001 . . . . . 6 2 # 0
6160a1i 9 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → 2 # 0)
6213, 58, 59, 61divap0d 8752 . . . 4 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) # 0)
6357, 62eqbrtrd 4022 . . 3 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (cos‘𝐴) # 0)
64 tanval2ap 11705 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
6563, 64syldan 282 . 2 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))))))
6651, 55, 653eqtr4rd 2221 1 ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) # 0) → (tan‘𝐴) = (((exp‘(2 · (i · 𝐴))) − 1) / (i · ((exp‘(2 · (i · 𝐴))) + 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  0cc0 7802  1c1 7803  ici 7804   + caddc 7805   · cmul 7807  cmin 8118  -cneg 8119   # cap 8528   / cdiv 8618  2c2 8959  cz 9242  cexp 10505  expce 11634  cosccos 11637  tanctan 11638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-disj 3978  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-ico 9881  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-fac 10690  df-bc 10712  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346  df-ef 11640  df-sin 11642  df-cos 11643  df-tan 11644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator