ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds2ln GIF version

Theorem dvds2ln 11815
Description: If an integer divides each of two other integers, it divides any linear combination of them. Theorem 1.1(c) in [ApostolNT] p. 14 (linearity property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds2ln (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐾𝑀𝐾𝑁) → 𝐾 ∥ ((𝐼 · 𝑀) + (𝐽 · 𝑁))))

Proof of Theorem dvds2ln
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr1 1003 . . 3 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐾 ∈ ℤ)
2 simpr2 1004 . . 3 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℤ)
31, 2jca 306 . 2 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ))
4 simpr3 1005 . . 3 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
51, 4jca 306 . 2 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
6 simpll 527 . . . . 5 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐼 ∈ ℤ)
76, 2zmulcld 9370 . . . 4 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐼 · 𝑀) ∈ ℤ)
8 simplr 528 . . . . 5 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐽 ∈ ℤ)
98, 4zmulcld 9370 . . . 4 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐽 · 𝑁) ∈ ℤ)
107, 9zaddcld 9368 . . 3 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐼 · 𝑀) + (𝐽 · 𝑁)) ∈ ℤ)
111, 10jca 306 . 2 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ ((𝐼 · 𝑀) + (𝐽 · 𝑁)) ∈ ℤ))
12 zmulcl 9295 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑥 · 𝐼) ∈ ℤ)
13 zmulcl 9295 . . . . . . . 8 ((𝑦 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑦 · 𝐽) ∈ ℤ)
1412, 13anim12i 338 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝐽 ∈ ℤ)) → ((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ))
1514an4s 588 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ)) → ((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ))
1615expcom 116 . . . . 5 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ)))
1716adantr 276 . . . 4 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ)))
1817imp 124 . . 3 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ))
19 zaddcl 9282 . . 3 (((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ) → ((𝑥 · 𝐼) + (𝑦 · 𝐽)) ∈ ℤ)
2018, 19syl 14 . 2 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐼) + (𝑦 · 𝐽)) ∈ ℤ)
21 zcn 9247 . . . . . . . 8 ((𝑥 · 𝐼) ∈ ℤ → (𝑥 · 𝐼) ∈ ℂ)
22 zcn 9247 . . . . . . . 8 ((𝑦 · 𝐽) ∈ ℤ → (𝑦 · 𝐽) ∈ ℂ)
2321, 22anim12i 338 . . . . . . 7 (((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ) → ((𝑥 · 𝐼) ∈ ℂ ∧ (𝑦 · 𝐽) ∈ ℂ))
2418, 23syl 14 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐼) ∈ ℂ ∧ (𝑦 · 𝐽) ∈ ℂ))
251zcnd 9365 . . . . . . 7 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐾 ∈ ℂ)
2625adantr 276 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐾 ∈ ℂ)
27 adddir 7939 . . . . . . 7 (((𝑥 · 𝐼) ∈ ℂ ∧ (𝑦 · 𝐽) ∈ ℂ ∧ 𝐾 ∈ ℂ) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = (((𝑥 · 𝐼) · 𝐾) + ((𝑦 · 𝐽) · 𝐾)))
28273expa 1203 . . . . . 6 ((((𝑥 · 𝐼) ∈ ℂ ∧ (𝑦 · 𝐽) ∈ ℂ) ∧ 𝐾 ∈ ℂ) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = (((𝑥 · 𝐼) · 𝐾) + ((𝑦 · 𝐽) · 𝐾)))
2924, 26, 28syl2anc 411 . . . . 5 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = (((𝑥 · 𝐼) · 𝐾) + ((𝑦 · 𝐽) · 𝐾)))
30 zcn 9247 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
3130adantr 276 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℂ)
3231adantl 277 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℂ)
33 zcn 9247 . . . . . . . 8 (𝐼 ∈ ℤ → 𝐼 ∈ ℂ)
3433ad3antrrr 492 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐼 ∈ ℂ)
3532, 34, 26mul32d 8100 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐼) · 𝐾) = ((𝑥 · 𝐾) · 𝐼))
36 zcn 9247 . . . . . . . . 9 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
3736adantl 277 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℂ)
3837adantl 277 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℂ)
398zcnd 9365 . . . . . . . 8 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐽 ∈ ℂ)
4039adantr 276 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐽 ∈ ℂ)
4138, 40, 26mul32d 8100 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑦 · 𝐽) · 𝐾) = ((𝑦 · 𝐾) · 𝐽))
4235, 41oveq12d 5887 . . . . 5 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) · 𝐾) + ((𝑦 · 𝐽) · 𝐾)) = (((𝑥 · 𝐾) · 𝐼) + ((𝑦 · 𝐾) · 𝐽)))
4332, 26mulcld 7968 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝐾) ∈ ℂ)
4443, 34mulcomd 7969 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐾) · 𝐼) = (𝐼 · (𝑥 · 𝐾)))
4538, 26mulcld 7968 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑦 · 𝐾) ∈ ℂ)
4645, 40mulcomd 7969 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑦 · 𝐾) · 𝐽) = (𝐽 · (𝑦 · 𝐾)))
4744, 46oveq12d 5887 . . . . 5 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐾) · 𝐼) + ((𝑦 · 𝐾) · 𝐽)) = ((𝐼 · (𝑥 · 𝐾)) + (𝐽 · (𝑦 · 𝐾))))
4829, 42, 473eqtrd 2214 . . . 4 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = ((𝐼 · (𝑥 · 𝐾)) + (𝐽 · (𝑦 · 𝐾))))
49 oveq2 5877 . . . . 5 ((𝑥 · 𝐾) = 𝑀 → (𝐼 · (𝑥 · 𝐾)) = (𝐼 · 𝑀))
50 oveq2 5877 . . . . 5 ((𝑦 · 𝐾) = 𝑁 → (𝐽 · (𝑦 · 𝐾)) = (𝐽 · 𝑁))
5149, 50oveqan12d 5888 . . . 4 (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝐾) = 𝑁) → ((𝐼 · (𝑥 · 𝐾)) + (𝐽 · (𝑦 · 𝐾))) = ((𝐼 · 𝑀) + (𝐽 · 𝑁)))
5248, 51sylan9eq 2230 . . 3 (((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝐾) = 𝑁)) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = ((𝐼 · 𝑀) + (𝐽 · 𝑁)))
5352ex 115 . 2 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝐾) = 𝑁) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = ((𝐼 · 𝑀) + (𝐽 · 𝑁))))
543, 5, 11, 20, 53dvds2lem 11794 1 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐾𝑀𝐾𝑁) → 𝐾 ∥ ((𝐼 · 𝑀) + (𝐽 · 𝑁))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148   class class class wbr 4000  (class class class)co 5869  cc 7800   + caddc 7805   · cmul 7807  cz 9242  cdvds 11778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-dvds 11779
This theorem is referenced by:  gcdaddm  11968  dvdsgcd  11996
  Copyright terms: Public domain W3C validator