ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds2ln GIF version

Theorem dvds2ln 11321
Description: If an integer divides each of two other integers, it divides any linear combination of them. Theorem 1.1(c) in [ApostolNT] p. 14 (linearity property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds2ln (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐾𝑀𝐾𝑁) → 𝐾 ∥ ((𝐼 · 𝑀) + (𝐽 · 𝑁))))

Proof of Theorem dvds2ln
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr1 955 . . 3 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐾 ∈ ℤ)
2 simpr2 956 . . 3 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℤ)
31, 2jca 302 . 2 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ))
4 simpr3 957 . . 3 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
51, 4jca 302 . 2 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
6 simpll 499 . . . . 5 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐼 ∈ ℤ)
76, 2zmulcld 9031 . . . 4 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐼 · 𝑀) ∈ ℤ)
8 simplr 500 . . . . 5 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐽 ∈ ℤ)
98, 4zmulcld 9031 . . . 4 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐽 · 𝑁) ∈ ℤ)
107, 9zaddcld 9029 . . 3 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐼 · 𝑀) + (𝐽 · 𝑁)) ∈ ℤ)
111, 10jca 302 . 2 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ ((𝐼 · 𝑀) + (𝐽 · 𝑁)) ∈ ℤ))
12 zmulcl 8959 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑥 · 𝐼) ∈ ℤ)
13 zmulcl 8959 . . . . . . . 8 ((𝑦 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑦 · 𝐽) ∈ ℤ)
1412, 13anim12i 334 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝐽 ∈ ℤ)) → ((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ))
1514an4s 558 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ)) → ((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ))
1615expcom 115 . . . . 5 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ)))
1716adantr 272 . . . 4 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ)))
1817imp 123 . . 3 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ))
19 zaddcl 8946 . . 3 (((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ) → ((𝑥 · 𝐼) + (𝑦 · 𝐽)) ∈ ℤ)
2018, 19syl 14 . 2 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐼) + (𝑦 · 𝐽)) ∈ ℤ)
21 zcn 8911 . . . . . . . 8 ((𝑥 · 𝐼) ∈ ℤ → (𝑥 · 𝐼) ∈ ℂ)
22 zcn 8911 . . . . . . . 8 ((𝑦 · 𝐽) ∈ ℤ → (𝑦 · 𝐽) ∈ ℂ)
2321, 22anim12i 334 . . . . . . 7 (((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ) → ((𝑥 · 𝐼) ∈ ℂ ∧ (𝑦 · 𝐽) ∈ ℂ))
2418, 23syl 14 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐼) ∈ ℂ ∧ (𝑦 · 𝐽) ∈ ℂ))
251zcnd 9026 . . . . . . 7 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐾 ∈ ℂ)
2625adantr 272 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐾 ∈ ℂ)
27 adddir 7629 . . . . . . 7 (((𝑥 · 𝐼) ∈ ℂ ∧ (𝑦 · 𝐽) ∈ ℂ ∧ 𝐾 ∈ ℂ) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = (((𝑥 · 𝐼) · 𝐾) + ((𝑦 · 𝐽) · 𝐾)))
28273expa 1149 . . . . . 6 ((((𝑥 · 𝐼) ∈ ℂ ∧ (𝑦 · 𝐽) ∈ ℂ) ∧ 𝐾 ∈ ℂ) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = (((𝑥 · 𝐼) · 𝐾) + ((𝑦 · 𝐽) · 𝐾)))
2924, 26, 28syl2anc 406 . . . . 5 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = (((𝑥 · 𝐼) · 𝐾) + ((𝑦 · 𝐽) · 𝐾)))
30 zcn 8911 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
3130adantr 272 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℂ)
3231adantl 273 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℂ)
33 zcn 8911 . . . . . . . 8 (𝐼 ∈ ℤ → 𝐼 ∈ ℂ)
3433ad3antrrr 479 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐼 ∈ ℂ)
3532, 34, 26mul32d 7786 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐼) · 𝐾) = ((𝑥 · 𝐾) · 𝐼))
36 zcn 8911 . . . . . . . . 9 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
3736adantl 273 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℂ)
3837adantl 273 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℂ)
398zcnd 9026 . . . . . . . 8 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐽 ∈ ℂ)
4039adantr 272 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐽 ∈ ℂ)
4138, 40, 26mul32d 7786 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑦 · 𝐽) · 𝐾) = ((𝑦 · 𝐾) · 𝐽))
4235, 41oveq12d 5724 . . . . 5 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) · 𝐾) + ((𝑦 · 𝐽) · 𝐾)) = (((𝑥 · 𝐾) · 𝐼) + ((𝑦 · 𝐾) · 𝐽)))
4332, 26mulcld 7658 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝐾) ∈ ℂ)
4443, 34mulcomd 7659 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐾) · 𝐼) = (𝐼 · (𝑥 · 𝐾)))
4538, 26mulcld 7658 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑦 · 𝐾) ∈ ℂ)
4645, 40mulcomd 7659 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑦 · 𝐾) · 𝐽) = (𝐽 · (𝑦 · 𝐾)))
4744, 46oveq12d 5724 . . . . 5 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐾) · 𝐼) + ((𝑦 · 𝐾) · 𝐽)) = ((𝐼 · (𝑥 · 𝐾)) + (𝐽 · (𝑦 · 𝐾))))
4829, 42, 473eqtrd 2136 . . . 4 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = ((𝐼 · (𝑥 · 𝐾)) + (𝐽 · (𝑦 · 𝐾))))
49 oveq2 5714 . . . . 5 ((𝑥 · 𝐾) = 𝑀 → (𝐼 · (𝑥 · 𝐾)) = (𝐼 · 𝑀))
50 oveq2 5714 . . . . 5 ((𝑦 · 𝐾) = 𝑁 → (𝐽 · (𝑦 · 𝐾)) = (𝐽 · 𝑁))
5149, 50oveqan12d 5725 . . . 4 (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝐾) = 𝑁) → ((𝐼 · (𝑥 · 𝐾)) + (𝐽 · (𝑦 · 𝐾))) = ((𝐼 · 𝑀) + (𝐽 · 𝑁)))
5248, 51sylan9eq 2152 . . 3 (((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝐾) = 𝑁)) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = ((𝐼 · 𝑀) + (𝐽 · 𝑁)))
5352ex 114 . 2 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝐾) = 𝑁) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = ((𝐼 · 𝑀) + (𝐽 · 𝑁))))
543, 5, 11, 20, 53dvds2lem 11300 1 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐾𝑀𝐾𝑁) → 𝐾 ∥ ((𝐼 · 𝑀) + (𝐽 · 𝑁))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 930   = wceq 1299  wcel 1448   class class class wbr 3875  (class class class)co 5706  cc 7498   + caddc 7503   · cmul 7505  cz 8906  cdvds 11288
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-ltadd 7611
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-br 3876  df-opab 3930  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-iota 5024  df-fun 5061  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-inn 8579  df-n0 8830  df-z 8907  df-dvds 11289
This theorem is referenced by:  gcdaddm  11467  dvdsgcd  11493
  Copyright terms: Public domain W3C validator