ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds2ln GIF version

Theorem dvds2ln 12179
Description: If an integer divides each of two other integers, it divides any linear combination of them. Theorem 1.1(c) in [ApostolNT] p. 14 (linearity property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds2ln (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐾𝑀𝐾𝑁) → 𝐾 ∥ ((𝐼 · 𝑀) + (𝐽 · 𝑁))))

Proof of Theorem dvds2ln
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr1 1006 . . 3 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐾 ∈ ℤ)
2 simpr2 1007 . . 3 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℤ)
31, 2jca 306 . 2 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ))
4 simpr3 1008 . . 3 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
51, 4jca 306 . 2 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
6 simpll 527 . . . . 5 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐼 ∈ ℤ)
76, 2zmulcld 9508 . . . 4 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐼 · 𝑀) ∈ ℤ)
8 simplr 528 . . . . 5 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐽 ∈ ℤ)
98, 4zmulcld 9508 . . . 4 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐽 · 𝑁) ∈ ℤ)
107, 9zaddcld 9506 . . 3 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐼 · 𝑀) + (𝐽 · 𝑁)) ∈ ℤ)
111, 10jca 306 . 2 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ ((𝐼 · 𝑀) + (𝐽 · 𝑁)) ∈ ℤ))
12 zmulcl 9433 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑥 · 𝐼) ∈ ℤ)
13 zmulcl 9433 . . . . . . . 8 ((𝑦 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑦 · 𝐽) ∈ ℤ)
1412, 13anim12i 338 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝐽 ∈ ℤ)) → ((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ))
1514an4s 588 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ)) → ((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ))
1615expcom 116 . . . . 5 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ)))
1716adantr 276 . . . 4 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ)))
1817imp 124 . . 3 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ))
19 zaddcl 9419 . . 3 (((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ) → ((𝑥 · 𝐼) + (𝑦 · 𝐽)) ∈ ℤ)
2018, 19syl 14 . 2 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐼) + (𝑦 · 𝐽)) ∈ ℤ)
21 zcn 9384 . . . . . . . 8 ((𝑥 · 𝐼) ∈ ℤ → (𝑥 · 𝐼) ∈ ℂ)
22 zcn 9384 . . . . . . . 8 ((𝑦 · 𝐽) ∈ ℤ → (𝑦 · 𝐽) ∈ ℂ)
2321, 22anim12i 338 . . . . . . 7 (((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ) → ((𝑥 · 𝐼) ∈ ℂ ∧ (𝑦 · 𝐽) ∈ ℂ))
2418, 23syl 14 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐼) ∈ ℂ ∧ (𝑦 · 𝐽) ∈ ℂ))
251zcnd 9503 . . . . . . 7 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐾 ∈ ℂ)
2625adantr 276 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐾 ∈ ℂ)
27 adddir 8070 . . . . . . 7 (((𝑥 · 𝐼) ∈ ℂ ∧ (𝑦 · 𝐽) ∈ ℂ ∧ 𝐾 ∈ ℂ) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = (((𝑥 · 𝐼) · 𝐾) + ((𝑦 · 𝐽) · 𝐾)))
28273expa 1206 . . . . . 6 ((((𝑥 · 𝐼) ∈ ℂ ∧ (𝑦 · 𝐽) ∈ ℂ) ∧ 𝐾 ∈ ℂ) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = (((𝑥 · 𝐼) · 𝐾) + ((𝑦 · 𝐽) · 𝐾)))
2924, 26, 28syl2anc 411 . . . . 5 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = (((𝑥 · 𝐼) · 𝐾) + ((𝑦 · 𝐽) · 𝐾)))
30 zcn 9384 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
3130adantr 276 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℂ)
3231adantl 277 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℂ)
33 zcn 9384 . . . . . . . 8 (𝐼 ∈ ℤ → 𝐼 ∈ ℂ)
3433ad3antrrr 492 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐼 ∈ ℂ)
3532, 34, 26mul32d 8232 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐼) · 𝐾) = ((𝑥 · 𝐾) · 𝐼))
36 zcn 9384 . . . . . . . . 9 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
3736adantl 277 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℂ)
3837adantl 277 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℂ)
398zcnd 9503 . . . . . . . 8 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐽 ∈ ℂ)
4039adantr 276 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐽 ∈ ℂ)
4138, 40, 26mul32d 8232 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑦 · 𝐽) · 𝐾) = ((𝑦 · 𝐾) · 𝐽))
4235, 41oveq12d 5969 . . . . 5 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) · 𝐾) + ((𝑦 · 𝐽) · 𝐾)) = (((𝑥 · 𝐾) · 𝐼) + ((𝑦 · 𝐾) · 𝐽)))
4332, 26mulcld 8100 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝐾) ∈ ℂ)
4443, 34mulcomd 8101 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐾) · 𝐼) = (𝐼 · (𝑥 · 𝐾)))
4538, 26mulcld 8100 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑦 · 𝐾) ∈ ℂ)
4645, 40mulcomd 8101 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑦 · 𝐾) · 𝐽) = (𝐽 · (𝑦 · 𝐾)))
4744, 46oveq12d 5969 . . . . 5 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐾) · 𝐼) + ((𝑦 · 𝐾) · 𝐽)) = ((𝐼 · (𝑥 · 𝐾)) + (𝐽 · (𝑦 · 𝐾))))
4829, 42, 473eqtrd 2243 . . . 4 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = ((𝐼 · (𝑥 · 𝐾)) + (𝐽 · (𝑦 · 𝐾))))
49 oveq2 5959 . . . . 5 ((𝑥 · 𝐾) = 𝑀 → (𝐼 · (𝑥 · 𝐾)) = (𝐼 · 𝑀))
50 oveq2 5959 . . . . 5 ((𝑦 · 𝐾) = 𝑁 → (𝐽 · (𝑦 · 𝐾)) = (𝐽 · 𝑁))
5149, 50oveqan12d 5970 . . . 4 (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝐾) = 𝑁) → ((𝐼 · (𝑥 · 𝐾)) + (𝐽 · (𝑦 · 𝐾))) = ((𝐼 · 𝑀) + (𝐽 · 𝑁)))
5248, 51sylan9eq 2259 . . 3 (((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝐾) = 𝑁)) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = ((𝐼 · 𝑀) + (𝐽 · 𝑁)))
5352ex 115 . 2 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝐾) = 𝑁) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = ((𝐼 · 𝑀) + (𝐽 · 𝑁))))
543, 5, 11, 20, 53dvds2lem 12158 1 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐾𝑀𝐾𝑁) → 𝐾 ∥ ((𝐼 · 𝑀) + (𝐽 · 𝑁))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177   class class class wbr 4047  (class class class)co 5951  cc 7930   + caddc 7935   · cmul 7937  cz 9379  cdvds 12142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-iota 5237  df-fun 5278  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-n0 9303  df-z 9380  df-dvds 12143
This theorem is referenced by:  gcdaddm  12349  dvdsgcd  12377
  Copyright terms: Public domain W3C validator