ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sublt0d GIF version

Theorem sublt0d 8424
Description: When a subtraction gives a negative result. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
sublt0d.1 (𝜑𝐴 ∈ ℝ)
sublt0d.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
sublt0d (𝜑 → ((𝐴𝐵) < 0 ↔ 𝐴 < 𝐵))

Proof of Theorem sublt0d
StepHypRef Expression
1 sublt0d.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 sublt0d.2 . . 3 (𝜑𝐵 ∈ ℝ)
3 0red 7858 . . 3 (𝜑 → 0 ∈ ℝ)
41, 2, 3ltsubaddd 8395 . 2 (𝜑 → ((𝐴𝐵) < 0 ↔ 𝐴 < (0 + 𝐵)))
52recnd 7885 . . . 4 (𝜑𝐵 ∈ ℂ)
65addid2d 8004 . . 3 (𝜑 → (0 + 𝐵) = 𝐵)
76breq2d 3973 . 2 (𝜑 → (𝐴 < (0 + 𝐵) ↔ 𝐴 < 𝐵))
84, 7bitrd 187 1 (𝜑 → ((𝐴𝐵) < 0 ↔ 𝐴 < 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 2125   class class class wbr 3961  (class class class)co 5814  cr 7710  0cc0 7711   + caddc 7714   < clt 7891  cmin 8025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-addcom 7811  ax-addass 7813  ax-distr 7815  ax-i2m1 7816  ax-0id 7819  ax-rnegex 7820  ax-cnre 7822  ax-pre-ltadd 7827
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-opab 4022  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-iota 5128  df-fun 5165  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-pnf 7893  df-mnf 7894  df-ltxr 7896  df-sub 8027  df-neg 8028
This theorem is referenced by:  modfzo0difsn  10272  maxabslemlub  11084  trirec0  13556  apdifflemf  13558
  Copyright terms: Public domain W3C validator